Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Brain ; 146(6): 2298-2315, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508327

RESUMEN

Huntingtin (HTT)-lowering therapies show great promise in treating Huntington's disease. We have developed a microRNA targeting human HTT that is delivered in an adeno-associated serotype 5 viral vector (AAV5-miHTT), and here use animal behaviour, MRI, non-invasive proton magnetic resonance spectroscopy and striatal RNA sequencing as outcome measures in preclinical mouse studies of AAV5-miHTT. The effects of AAV5-miHTT treatment were evaluated in homozygous Q175FDN mice, a mouse model of Huntington's disease with severe neuropathological and behavioural phenotypes. Homozygous mice were used instead of the more commonly used heterozygous strain, which exhibit milder phenotypes. Three-month-old homozygous Q175FDN mice, which had developed acute phenotypes by the time of treatment, were injected bilaterally into the striatum with either formulation buffer (phosphate-buffered saline + 5% sucrose), low dose (5.2 × 109 genome copies/mouse) or high dose (1.3 × 1011 genome copies/mouse) AAV5-miHTT. Wild-type mice injected with formulation buffer served as controls. Behavioural assessments of cognition, T1-weighted structural MRI and striatal proton magnetic resonance spectroscopy were performed 3 months after injection, and shortly afterwards the animals were sacrificed to collect brain tissue for protein and RNA analysis. Motor coordination was assessed at 1-month intervals beginning at 2 months of age until sacrifice. Dose-dependent changes in AAV5 vector DNA level, miHTT expression and mutant HTT were observed in striatum and cortex of AAV5-miHTT-treated Huntington's disease model mice. This pattern of microRNA expression and mutant HTT lowering rescued weight loss in homozygous Q175FDN mice but did not affect motor or cognitive phenotypes. MRI volumetric analysis detected atrophy in four brain regions in homozygous Q175FDN mice, and treatment with high dose AAV5-miHTT rescued this effect in the hippocampus. Like previous magnetic resonance spectroscopy studies in Huntington's disease patients, decreased total N-acetyl aspartate and increased myo-inositol levels were found in the striatum of homozygous Q175FDN mice. These neurochemical findings were partially reversed with AAV5-miHTT treatment. Striatal transcriptional analysis using RNA sequencing revealed mutant HTT-induced changes that were partially reversed by HTT lowering with AAV5-miHTT. Striatal proton magnetic resonance spectroscopy analysis suggests a restoration of neuronal function, and striatal RNA sequencing analysis shows a reversal of transcriptional dysregulation following AAV5-miHTT in a homozygous Huntington's disease mouse model with severe pathology. The results of this study support the use of magnetic resonance spectroscopy in HTT-lowering clinical trials and strengthen the therapeutic potential of AAV5-miHTT in reversing severe striatal dysfunction in Huntington's disease.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Humanos , Animales , Ratones , Lactante , Enfermedad de Huntington/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cuerpo Estriado/metabolismo , Encéfalo/patología , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animales de Enfermedad
2.
Cells ; 11(17)2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36078156

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by GAG expansion in exon 1 of the huntingtin (HTT) gene. AAV5-miHTT is an adeno-associated virus serotype 5-based vector expressing an engineered HTT-targeting microRNA (miHTT). Preclinical studies demonstrate the brain-wide spread of AAV5-miHTT following a single intrastriatal injection, which is partly mediated by neuronal transport. miHTT has been previously associated with extracellular vesicles (EVs), but whether EVs mediate the intercellular transmission of miHTT remains unknown. A contactless culture system was used to evaluate the transport of miHTT, either from a donor cell line overexpressing miHTT or AAV5-miHTT transduced neurons. Transfer of miHTT to recipient (HEK-293T, HeLa, and HD patient-derived neurons) cells was observed, which significantly reduced HTT mRNA levels. miHTT was present in EV-enriched fractions isolated from culture media. Immunocytochemical and in situ hybridization experiments showed that the signal for miHTT and EV markers co-localized, confirming the transport of miHTT within EVs. In summary, we provide evidence that an engineered miRNA-miHTT-is loaded into EVs, transported across extracellular space, and taken up by neighboring cells, and importantly, that miHTT is active in recipient cells downregulating HTT expression. This represents an additional mechanism contributing to the widespread biodistribution of AAV5-miHTT.


Asunto(s)
Vesículas Extracelulares , Proteína Huntingtina , Enfermedad de Huntington , MicroARNs , Humanos , Dependovirus , Vesículas Extracelulares/metabolismo , Vectores Genéticos/uso terapéutico , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/uso terapéutico , Distribución Tisular
3.
Nucleic Acid Ther ; 32(3): 194-205, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34878314

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by the expansion of a CAG repeat in the ATXN3 gene. This mutation leads to a toxic gain of function of the ataxin-3 protein, resulting in neuronal dysfunction and atrophy of specific brain regions over time. As ataxin-3 is a dispensable protein in rodents, ataxin-3 knockdown by gene therapy may be a powerful approach for the treatment of SCA3. In this study, we tested the feasibility of an adeno-associated viral (AAV) vector carrying a previously described artificial microRNA against ATXN3 in a striatal mouse model of SCA3. Striatal injection of the AAV resulted in good distribution throughout the striatum, with strong dose-dependent ataxin-3 knockdown. The hallmark intracellular ataxin-3 inclusions were almost completely alleviated by the microRNA-induced ATXN3 knockdown. In addition, the striatal lesion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) in the SCA3 mice was rescued by ATXN3 knockdown, indicating functional rescue of neuronal signaling and health upon AAV treatment. Together, these data suggest that microRNA-induced ataxin-3 knockdown is a promising therapeutic strategy in the treatment of SCA3.


Asunto(s)
Ataxina-3 , Enfermedad de Machado-Joseph , MicroARNs , Animales , Ataxina-3/genética , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Enfermedad de Machado-Joseph/terapia , Ratones , MicroARNs/genética , MicroARNs/uso terapéutico , Proteínas Represoras/genética , Repeticiones de Trinucleótidos
4.
Brain Commun ; 3(2): fcab054, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34704020

RESUMEN

The preclinical development of microRNA-based gene therapies for inherited neurodegenerative diseases is accompanied by translational challenges. Due to the inaccessibility of the brain to periodically evaluate therapy effects, accessible and reliable biomarkers indicative of dosing, durability and therapeutic efficacy in the central nervous system are very much needed. This is particularly important for viral vector-based gene therapies, in which a one-time administration results in long-term expression of active therapeutic molecules in the brain. Recently, extracellular vesicles have been identified as carriers of RNA species, including microRNAs, and proteins in all biological fluids, whilst becoming potential sources of biomarkers for diagnosis. In this study, we investigated the secretion and potential use of circulating miRNAs associated with extracellular vesicles as suitable sources to monitor the expression and durability of gene therapies in the brain. Neuronal cells derived from induced pluripotent stem cells were treated with adeno-associated viral vector serotype 5 carrying an engineered microRNA targeting huntingtin or ataxin3 gene sequences, the diseases-causing genes of Huntington disease and spinocerebellar ataxia type 3, respectively. After treatment, the secretion of mature engineered microRNA molecules was confirmed, with extracellular microRNA levels correlating with viral dose and cellular microRNA expression in neurons. We further investigated the detection of engineered microRNAs over time in the CSF of non-human primates after a single intrastriatal injection of adeno-associated viral vector serotype 5 carrying a huntingtin-targeting engineered microRNA. Quantifiable engineered microRNA levels enriched in extracellular vesicles were detected in the CSF up to 2 years after brain infusion. Altogether, these results confirm the long-term expression of adeno-associated viral vector serotype 5-delivered microRNAs and support the use of extracellular vesicle-associated microRNAs as novel translational pharmacokinetic markers in ongoing clinical trials of gene therapies for neurodegenerative diseases.

5.
Sci Transl Med ; 13(588)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827977

RESUMEN

Huntingtin (HTT)-lowering therapies hold promise to slow down neurodegeneration in Huntington's disease (HD). Here, we assessed the translatability and long-term durability of recombinant adeno-associated viral vector serotype 5 expressing a microRNA targeting human HTT (rAAV5-miHTT) administered by magnetic resonance imaging-guided convention-enhanced delivery in transgenic HD minipigs. rAAV5-miHTT (1.2 × 1013 vector genome (VG) copies per brain) was successfully administered into the striatum (bilaterally in caudate and putamen), using age-matched untreated animals as controls. Widespread brain biodistribution of vector DNA was observed, with the highest concentration in target (striatal) regions, thalamus, and cortical regions. Vector DNA presence and transgene expression were similar at 6 and 12 months after administration. Expression of miHTT strongly correlated with vector DNA, with a corresponding reduction of mutant HTT (mHTT) protein of more than 75% in injected areas, and 30 to 50% lowering in distal regions. Translational pharmacokinetic and pharmacodynamic measures in cerebrospinal fluid (CSF) were largely in line with the effects observed in the brain. CSF miHTT expression was detected up to 12 months, with CSF mHTT protein lowering of 25 to 30% at 6 and 12 months after dosing. This study demonstrates widespread biodistribution, strong and durable efficiency of rAAV5-miHTT in disease-relevant regions in a large brain, and the potential of using CSF analysis to determine vector expression and efficacy in the clinic.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Animales , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/genética , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , MicroARNs/metabolismo , Porcinos , Porcinos Enanos/metabolismo , Distribución Tisular
6.
Brain Sci ; 11(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498212

RESUMEN

Huntington disease (HD) is a fatal, neurodegenerative genetic disorder with aggregation of mutant Huntingtin protein (mutHTT) in the brain as a key pathological mechanism. There are currently no disease modifying therapies for HD; however, HTT-lowering therapies hold promise. Recombinant adeno-associated virus serotype 5 expressing a microRNA that targets HTT mRNA (AAV5-miHTT) is in development for the treatment of HD with promising results in rodent and minipig HD models. To support a clinical trial, toxicity studies were performed in non-human primates (NHP, Macaca fascicularis) and Sprague-Dawley rats to evaluate the safety of AAV5-miHTT, the neurosurgical administration procedure, vector delivery and expression of the miHTT transgene during a 6-month observation period. For accurate delivery of AAV5-miHTT to the striatum, real-time magnetic resonance imaging (MRI) with convection-enhanced delivery (CED) was used in NHP. Catheters were successfully implanted in 24 NHP, without neurological symptoms, and resulted in tracer signal in the target areas. Widespread vector DNA and miHTT transgene distribution in the brain was found, particularly in areas associated with HD pathology. Intrastriatal administration of AAV5-miHTT was well tolerated with no clinically relevant changes in either species. These studies demonstrate the excellent safety profile of AAV5-miHTT, the reproducibility and tolerability of intrastriatal administration, and the delivery of AAV5-miHTT to the brain, which support the transition of AAV5-miHTT into clinical studies.

7.
Mol Ther Methods Clin Dev ; 15: 275-284, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31737741

RESUMEN

Huntington disease (HD) is a fatal neurodegenerative genetic disorder, thought to reflect a toxic gain of function in huntingtin (Htt) protein. Adeno-associated viral vector serotype 5 (AAV5)- microRNA targeting huntingtin (miHTT) is a HD gene-therapy candidate that efficiently lowers HTT using RNAi. This study analyzed the efficacy and potential for off-target effects with AAV5-miHTT in neuronal and astrocyte cell cultures differentiated from induced pluripotent stem cells (iPSCs) from two individuals with HD (HD71 and HD180). One-time AAV5-miHTT treatment significantly reduced human HTT mRNA by 57% and Htt protein by 68% in neurons. Small RNA sequencing showed that mature miHTT was processed correctly without off-target passenger strand. No cellular microRNAs were dysregulated, indicating that endogenous RNAi machinery was unaffected by miHTT overexpression. qPCR validation of in silico-predicted off-target transcripts, next-generation sequencing, and pathway analysis confirmed absence of dysregulated genes due to sequence homology or seed-sequence activity of miHTT. Minor effects on gene expression were observed in both AAV5-miHTT and AAV5-GFP-treated samples, suggesting that they were due to viral transduction rather than miHTT. This study confirms the efficacy of AAV5-miHTT in HD patient iPSC-derived neuronal cultures and lack of off-target effects in gene expression and regulation in neuronal cells and astrocytes.

8.
Mol Ther Methods Clin Dev ; 13: 334-343, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-30984798

RESUMEN

Huntington disease (HD) is a fatal neurodegenerative disorder caused by an autosomal dominant CAG repeat expansion in the huntingtin (HTT) gene. The translated expanded polyglutamine repeat in the HTT protein is known to cause toxic gain of function. We showed previously that strong HTT lowering prevented neuronal dysfunction in HD rodents and minipigs after single intracranial injection of adeno-associated viral vector serotype 5 expressing a microRNA targeting human HTT (AAV5-miHTT). To evaluate long-term efficacy, AAV5-miHTT was injected into the striatum of knockin Q175 HD mice, and the mice were sacrificed 12 months post-injection. AAV5-miHTT caused a dose-dependent and sustained HTT protein reduction with subsequent suppression of mutant HTT aggregate formation in the striatum and cortex. Functional proof of concept was shown in transgenic R6/2 HD mice. Eight weeks after AAV5-miHTT treatment, a significant improvement in motor coordination on the rotarod was observed. Survival analysis showed that a single AAV5-miHTT treatment resulted in a significant 4-week increase in median survival compared with vehicle-treated R6/2 HD mice. The combination of long-term HTT lowering, reduction in aggregation, prevention of neuronal dysfunction, alleviation of HD-like symptoms, and beneficial survival observed in HD rodents treated with AAV5-miHTT supports the continued development of HTT-lowering gene therapies for HD.

9.
Mol Ther ; 26(9): 2163-2177, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30007561

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Previously, we showed strong huntingtin reduction and prevention of neuronal dysfunction in HD rodents using an engineered microRNA targeting human huntingtin, delivered via adeno-associated virus (AAV) serotype 5 vector with a transgene encoding an engineered miRNA against HTT mRNA (AAV5-miHTT). One of the challenges of rodents as a model of neurodegenerative diseases is their relatively small brain, making successful translation to the HD patient difficult. This is particularly relevant for gene therapy approaches, where distribution achieved upon local administration into the parenchyma is likely dependent on brain size and structure. Here, we aimed to demonstrate the translation of huntingtin-lowering gene therapy to a large-animal brain. We investigated the feasibility, efficacy, and tolerability of one-time intracranial administration of AAV5-miHTT in the transgenic HD (tgHD) minipig model. We detected widespread dose-dependent distribution of AAV5-miHTT throughout the tgHD minipig brain that correlated with the engineered microRNA expression. Both human mutant huntingtin mRNA and protein were significantly reduced in all brain regions transduced by AAV5-miHTT. The combination of widespread vector distribution and extensive huntingtin lowering observed with AAV5-miHTT supports the translation of a huntingtin-lowering gene therapy for HD from preclinical studies into the clinic.


Asunto(s)
Terapia Genética/métodos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/terapia , Animales , Animales Modificados Genéticamente , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Humanos , Enfermedad de Huntington/genética , MicroARNs/genética , MicroARNs/metabolismo , Porcinos , Porcinos Enanos , Expansión de Repetición de Trinucleótido/genética
10.
J Neurobiol ; 66(6): 591-602, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16555238

RESUMEN

A single exposure to a severe emotional stressor such as immobilization in wooden boards (IMO) causes long-term (days to weeks) peripheral and central desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor. However, the brain areas putatively involved in long-term desensitization are unknown. In the present experiment, adult male rats were subjected to 2 h of IMO and, 1 or 4 weeks later, exposed again to 1 h IMO together with stress-naive rats. C-fos mRNA activation just after IMO and 1 h after the termination of IMO (post-IMO) were evaluated by in situ hybridization. Whereas in most brain areas c-fos mRNA induction caused by the last IMO session was similar in stress-naive (controls) and previously immobilized rats, a few brain areas showed a reduced c-fos mRNA response: ventral lateral septum (LSv), medial amygdala (MeA), parvocellular region of the paraventricular hypothalamic nucleus (pPVN), and locus coeruleus (LC). In contrast, an enhanced expression was observed in the medial division of the bed nucleus stria terminalis (BSTMv). The present work demonstrates that a previous experience with a stressor can induce changes in c-fos mRNA expression in different brain areas in response to the homotypic stressor and suggests that LSv, MeA, and BSTMv may be important for providing signals to lower diencephalic (pPVN) and brainstem (LC) nuclei, which results in a lower physiological response to the homotypic stressor.


Asunto(s)
Encéfalo/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , ARN Mensajero/metabolismo , Estrés Psicológico/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Encéfalo/anatomía & histología , Encéfalo/fisiopatología , Mapeo Encefálico , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Límbico/anatomía & histología , Sistema Límbico/metabolismo , Sistema Límbico/fisiopatología , Locus Coeruleus/metabolismo , Locus Coeruleus/fisiopatología , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/fisiopatología , Ratas , Ratas Sprague-Dawley , Restricción Física , Núcleos Septales/metabolismo , Núcleos Septales/fisiopatología , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología , Tiempo
11.
Neurobiol Dis ; 22(2): 312-22, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16472549

RESUMEN

Chemokine receptors represent promising targets to attenuate inflammatory responses and subsequent secondary damage after brain injury. We studied the response of the chemokines CXCL1/CINC-1 and CXCL2/MIP-2 and their receptors CXCR1 and CXCR2 after controlled cortical impact injury in adult rats. Rapid upregulation of CXCL1/CINC-1 and CXCL2/MIP-2, followed by CXCR2 (but not CXCR1), was observed after injury. Constitutive neuronal CXCR2 immunoreactivity was detected in several brain areas, which rapidly but transiently downregulated upon trauma. A second CXCR2-positive compartment, mainly colocalized with the activated microglia/macrophage marker ED1, was detected rapidly after injury in the ipsilateral cortex, progressively emerging into deeper areas of the brain later in time. It is proposed that CXCR2 has a dual role after brain injury: (i) homologous neuronal CXCR2 downregulation would render neurons more vulnerable to injury, whereas (ii) chemotaxis and subsequent differentiation of blood-borne cells into a microglial-like phenotype would be promoted by the same receptor.


Asunto(s)
Daño Encefálico Crónico/inmunología , Lesiones Encefálicas/complicaciones , Quimiocinas/inmunología , Encefalitis/inmunología , Degeneración Nerviosa/inmunología , Receptores de Interleucina-8B/inmunología , Animales , Biomarcadores/metabolismo , Daño Encefálico Crónico/metabolismo , Daño Encefálico Crónico/fisiopatología , Diferenciación Celular/inmunología , Movimiento Celular/inmunología , Supervivencia Celular/inmunología , Quimiocina CXCL1 , Quimiocina CXCL2 , Quimiocinas CXC/inmunología , Quimiocinas CXC/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/inmunología , Ectodisplasinas , Encefalitis/metabolismo , Encefalitis/fisiopatología , Gliosis/inmunología , Gliosis/metabolismo , Gliosis/fisiopatología , Masculino , Proteínas de la Membrana/inmunología , Microglía/inmunología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Neuroinmunomodulación/inmunología , Ratas , Ratas Wistar , Receptores de Interleucina-8B/metabolismo , Factores de Necrosis Tumoral/inmunología , Regulación hacia Arriba/inmunología
12.
J Neurochem ; 93(5): 1177-88, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15934938

RESUMEN

We have recently found that a single endotoxin administration to rats reduced the hypothalamic-pituitary-adrenal response to another endotoxin administration 4 weeks later, which may be an example of the well-known phenomenon of endotoxin tolerance. However, the time elapsed between the two doses of endotoxin was long enough to consider the above results as an example of late tolerance, whose mechanisms are poorly characterized. To know if the brain plays a role in this phenomenon and to characterize the putative areas involved, we compared the c-fos mRNA response after a final dose of endotoxin in animals given vehicle or endotoxin 4 weeks before. Endotoxin caused a widespread induction of c-fos mRNA in the brain, similar to that previously reported by other laboratories. Whereas most of the brain areas were not sensitive to the previous experience with endotoxin, a few showed a reduced response in endotoxin-pretreated rats: the parvocellular and magnocellular regions of the paraventricular hypothalamic nucleus, the central amygdala, the lateral division of the bed nucleus and the locus coeruleus. We hypothesize that late tolerance to endotoxin may involve plastic changes in the brain, likely to be located in the central amygdala. The reduced activation of the central amygdala in rats previously treated with endotoxin may, in turn, reduce the activation of other brain areas, including the hypothalamic paraventicular nucleus.


Asunto(s)
Mapeo Encefálico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Endotoxinas/farmacología , Proteínas Proto-Oncogénicas c-fos/genética , ARN Mensajero/metabolismo , Animales , Esquema de Medicación , Tolerancia a Medicamentos , Inyecciones , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Distribución Tisular
13.
Eur J Neurosci ; 18(6): 1353-61, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14511316

RESUMEN

In the present work we have characterized the long-term influence of a single exposure to the stress of immobilization (IMO) on the hypothalamic-pituitary-adrenal (HPA) axis of adult rats. Rats without prior stress (control) and rats exposed to IMO for 2 h on day 1 (IMO+4wk) or on day 21 (IMO+1wk) were killed on day 28, either without stress (basal), immediately after IMO for 1 h (IMO), or 1 h after termination of IMO (post-IMO). IMO caused a strong activation of c-fos mRNA and corticotropin-releasing factor (CRF) and vasopressin (AVP) heteronuclear RNA (hnRNA) in the paraventricular nucleus of the hypothalamus in control rats; this activation was essentially maintained in the post-IMO period. The overall AVP hnRNA response to day 28 stress was not affected by prior stress. Post-IMO c-fos mRNA and CRF hnRNA levels were lower in previously stressed rats, as compared with controls. Whereas the effect of prior IMO on both peripheral HPA hormones and c-fos mRNA was maximal in IMO+1wk rats, the effect of prior stress on CRF hnRNA was only observed in IMO+4wk rats. The present data indicate that prior single IMO triggers a process of desensitization of the HPA responsiveness to IMO over the course of the following weeks. Although the various components of the HPA axis were modified in the same direction, a clear temporal dissociation was found among them, revealing the fine tuning of stress-induced activation of the HPA axis.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Inmovilización/efectos adversos , Sistema Hipófiso-Suprarrenal , Estrés Fisiológico/fisiopatología , Tiempo , Transcripción Genética , Hormona Adrenocorticotrópica/sangre , Animales , Corticosterona/sangre , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Hibridación in Situ , Masculino , Núcleo Hipotalámico Paraventricular/anatomía & histología , Núcleo Hipotalámico Paraventricular/fisiopatología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Nuclear Heterogéneo/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Estrés Fisiológico/sangre , Estrés Fisiológico/genética , Vasopresinas/genética , Vasopresinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA