Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomolecules ; 13(12)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136647

RESUMEN

Currently, there is great interest in the development of highly sensitive bioanalytical systems for diagnosing diseases at an early stage, when pathological biomarkers are present in biological fluids at low concentrations and there are no clinical manifestations. A promising direction is the use of molecular detectors-highly sensitive devices that detect signals from single biomacromolecules. A typical detector in this class is the atomic force microscope (AFM). The high sensitivity of an AFM-based bioanalysis system is determined by the size of the sensing element of an atomic force microscope-the cantilever-the radius of the curvature of which is comparable to that of a biomolecule. Biospecific molecular probe-target interactions are used to ensure detection system specificity. Antibodies, aptamers, synthetic antibodies, and peptides can be used as molecular probes. This study has demonstrated the possibility of using aptamers as molecular probes for AFM-based detection of the ovarian cancer biomarker CA125. Antigen detection in a nanomolar solution was carried out using AFM chips with immobilized aptamers, commercially available or synthesized based on sequences from open sources. Both aptamer types can be used for antigen detection, but the availability of sequence information enables additional modeling of the aptamer structure with allowance for modifications necessary for immobilization of the aptamer on an AFM chip surface. Information on the structure and oligomeric composition of aptamers in the solution was acquired by combining small-angle X-ray scattering and molecular modeling. Modeling enabled pre-selection, before the experimental stage, of aptamers for use as surface-immobilized molecular probes.


Asunto(s)
Aptámeros de Nucleótidos , Microscopía de Fuerza Atómica , Aptámeros de Nucleótidos/química , Sondas Moleculares , Modelos Moleculares
2.
Molecules ; 26(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34641523

RESUMEN

MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood-brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs. MicroRNAs, associated with the development of ASD in children, were selected as targets. The chips with immobilized molecular probes were incubated in serum samples of ASD patients and healthy volunteers. By atomic force microscopy (AFM), objects on the AFM chip surface have been revealed after incubation in the serum samples. The height of these objects amounted to 10 nm and 6 nm in the case of samples of ASD patients and healthy volunteers, respectively. MALDI-TOF-MS analysis of protein components on the chip surface allowed us to identify several cell proteins. These proteins are involved in the binding of nucleic acids (GBG10, RT24, RALYL), in the organization of proteasomes and nucleosomes (PSA4, NP1L4), and participate in the functioning of the channel of active potassium transport (KCNE5, KCNV2).


Asunto(s)
Trastorno del Espectro Autista/sangre , Proteínas Sanguíneas/genética , MicroARN Circulante/sangre , Microscopía de Fuerza Atómica/instrumentación , Adulto , Proteínas Sanguíneas/metabolismo , Niño , MicroARN Circulante/metabolismo , Femenino , Humanos , Masculino , Microscopía de Fuerza Atómica/métodos , Persona de Mediana Edad , Canales de Potasio con Entrada de Voltaje/sangre , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Polymers (Basel) ; 13(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063512

RESUMEN

External electromagnetic fields are known to be able to concentrate inside the construction elements of biosensors and bioreactors owing to reflection from their surface. This can lead to changes in the structure of biopolymers (such as proteins), incubated inside these elements, thus influencing their functional properties. Our present study concerned the revelation of the effect of spherical elements, commonly employed in biosensors and bioreactors, on the physicochemical properties of proteins with the example of the horseradish peroxidase (HRP) enzyme. In our experiments, a solution of HRP was incubated within a 30 cm-diameter titanium half-sphere, which was used as a model construction element. Atomic force microscopy (AFM) was employed for the single-molecule visualization of the HRP macromolecules, adsorbed from the test solution onto mica substrates in order to find out whether the incubation of the test HRP solution within the half-sphere influenced the HRP aggregation state. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was employed in order to reveal whether the incubation of HRP solution within the half-sphere led to any changes in its secondary structure. In parallel, spectrophotometry-based estimation of the HRP enzymatic activity was performed in order to find out if the HRP active site was affected by the electromagnetic field under the conditions of our experiments. We revealed an increased aggregation of HRP after the incubation of its solution within the half-sphere in comparison with the control sample incubated far outside the half-sphere. ATR-FTIR allowed us to reveal alterations in HRP's secondary structure. Such changes in the protein structure did not affect its active site, as was confirmed by spectrophotometry. The effect of spherical elements on a protein solution should be taken into account in the development of the optimized design of biosensors and bioreactors, intended for performing processes involving proteins in biomedicine and biotechnology, including highly sensitive biosensors intended for the diagnosis of socially significant diseases in humans (including oncology, cardiovascular diseases, etc.) at early stages.

4.
Sci Rep ; 11(1): 9907, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972657

RESUMEN

In our present paper, the influence of a pyramidal structure on physicochemical properties of a protein in buffer solution has been studied. The pyramidal structure employed herein was similar to those produced industrially for anechoic chambers. Pyramidal structures are also used as elements of biosensors. Herein, horseradish peroxidase (HRP) enzyme was used as a model protein. HRP macromolecules were adsorbed from their solution onto an atomically smooth mica substrate, and then visualized by atomic force microscopy (AFM). In parallel, the enzymatic activity of HRP was estimated by conventional spectrophotometry. Additionally, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) has been employed in order to find out whether or not the protein secondary structure changes after the incubation of its solution either near the apex of a pyramid or in the center of its base. Using AFM, we have demonstrated that the incubation of the protein solution either in the vicinity of the pyramid's apex or in the center of its base influences the physicochemical properties of the protein macromolecules. Namely, the incubation of the HRP solution in the vicinity of the top of the pyramidal structure has been shown to lead to an increase in the efficiency of the HRP adsorption onto mica. Moreover, after the incubation of the HRP solution either near the top of the pyramid or in the center of its base, the HRP macromolecules adsorb onto the mica surface predominantly in monomeric form. At that, the enzymatic activity of HRP does not change. The results of our present study are useful to be taken into account in the development of novel biosensor devices (including those for the diagnosis of cancer in humans), in which pyramidal structures are employed as sensor, noise suppression or construction elements.


Asunto(s)
Técnicas Biosensibles/métodos , Pruebas de Enzimas/métodos , Enzimas Inmovilizadas/ultraestructura , Peroxidasa de Rábano Silvestre/ultraestructura , Tampones (Química) , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Microscopía de Fuerza Atómica , Neoplasias/diagnóstico , Neoplasias/patología , Estructura Secundaria de Proteína , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier
5.
Molecules ; 26(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435278

RESUMEN

Atomic force microscopy (AFM)-based fishing is a promising method for the detection of low-abundant proteins. This method is based on the capturing of the target proteins from the analyzed solution onto a solid substrate, with subsequent counting of the captured protein molecules on the substrate surface by AFM. Protein adsorption onto the substrate surface represents one of the key factors determining the capturing efficiency. Accordingly, studying the factors influencing the protein adsorbability onto the substrate surface represents an actual direction in biomedical research. Herein, the influence of water motion in a flow-based system on the protein adsorbability and on its enzymatic activity has been studied with an example of horseradish peroxidase (HRP) enzyme by AFM, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and conventional spectrophotometry. In the experiments, HRP solution was incubated in a setup modeling the flow section of a biosensor communication. The measuring cell with the protein solution was placed near a coiled silicone pipe, through which water was pumped. The adsorbability of the protein onto the surface of the mica substrate has been studied by AFM. It has been demonstrated that incubation of the HRP solution near the coiled silicone pipe with flowing water leads to an increase in its adsorbability onto mica. This is accompanied by a change in the enzyme's secondary structure, as has been revealed by ATR-FTIR. At the same time, its enzymatic activity remains unchanged. The results reported herein can be useful in the development of models describing the influence of liquid flow on the properties of enzymes and other proteins. The latter is particularly important for the development of biosensors for biomedical applications-particularly for serological analysis, which is intended for the early diagnosis of various types of cancer and infectious diseases. Our results should also be taken into account in studies of the effects of protein aggregation on hemodynamics, which plays a key role in human body functioning.


Asunto(s)
Peroxidasa de Rábano Silvestre/aislamiento & purificación , Agua/química , Técnicas Biosensibles , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Microscopía de Fuerza Atómica , Estructura Secundaria de Proteína , Siliconas/química , Espectroscopía Infrarroja por Transformada de Fourier
6.
Sci Rep ; 10(1): 9022, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488177

RESUMEN

The phenomenon of knotted electromagnetic field (KEMF) is now actively studied, as such fields are characterized by a nontrivial topology. The research in this field is mainly aimed at technical applications - for instance, the development of efficient communication systems. Until present, however, the influence of KEMF on biological objects (including enzyme systems) was not considered. Herein, we have studied the influence of KEMF on the aggregation and enzymatic activity of a protein with the example of horseradish peroxidase (HRP). The test HRP solution was irradiated in KEMF (the radiation power density was 10-12 W/cm2 at 2.3 GHz frequency) for 40 min. After the irradiation, the aggregation of HRP was examined by atomic force microscopy (AFM) at the single-molecule level. The enzymatic activity was monitored by conventional spectrophotometry. It has been demonstrated that an increased aggregation of HRP, adsorbed on the AFM substrate surface, was observed after irradiation of the protein sample in KEMF with low (10-12 W/cm2) radiation power density; at the same time, the enzymatic activity remained unchanged. The results obtained herein can be used in the development of models describing the interaction of enzymes with electromagnetic field. The obtained data can also be of importance considering possible pathological factors that can take place upon the influence of KEMF on biological objects- for instance, changes in hemodynamics due to increased protein aggregation are possible; the functionality of protein complexes can also be affected by aggregation of their protein subunits. These effects should also be taken into account in the development of novel highly sensitive systems for human serological diagnostics of breast cancer, prostate cancer, brain cancer and other oncological pathologies, and for diagnostics of diseases in animals, and crops.


Asunto(s)
Campos Electromagnéticos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Microscopía de Fuerza Atómica , Agregado de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA