Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36902486

RESUMEN

Oral mucositis is a common side effect of cancer treatment, and in particular of treatment with the mTORC1 inhibitor everolimus. Current treatment methods are not efficient enough and a better understanding of the causes and mechanisms behind oral mucositis is necessary to find potential therapeutic targets. Here, we treated an organotypic 3D oral mucosal tissue model consisting of human keratinocytes grown on top of human fibroblasts with a high or low dose of everolimus for 40 or 60 h and investigated (1) the effect of everolimus on microscopic sections of the 3D cell culture for evidence of morphologic changes and (2) changes in the transcriptome by high throughput RNA-Seq analysis. We show that the most affected pathways are cornification, cytokine expression, glycolysis, and cell proliferation and we provide further details. This study provides a good resource towards a better understanding of the development of oral mucositis. It gives a detailed overview of the different molecular pathways that are involved in mucositis. This in turn provides information about potential therapeutic targets, which is an important step towards preventing or managing this common side effect of cancer treatment.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Mucositis , Estomatitis , Humanos , Everolimus/farmacología , Transcriptoma , Estomatitis/etiología , Mucosa Bucal , Mucositis/inducido químicamente , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/complicaciones , Técnicas de Cultivo Tridimensional de Células
2.
Nat Commun ; 13(1): 750, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136065

RESUMEN

Mitochondria host key metabolic processes vital for cellular energy provision and are central to cell fate decisions. They are subjected to unique genetic control by both nuclear DNA and their own multi-copy genome - mitochondrial DNA (mtDNA). Mutations in mtDNA often lead to clinically heterogeneous, maternally inherited diseases that display different organ-specific presentation at any stage of life. For a long time, genetic manipulation of mammalian mtDNA has posed a major challenge, impeding our ability to understand the basic mitochondrial biology and mechanisms underpinning mitochondrial disease. However, an important new tool for mtDNA mutagenesis has emerged recently, namely double-stranded DNA deaminase (DddA)-derived cytosine base editor (DdCBE). Here, we test this emerging tool for in vivo use, by delivering DdCBEs into mouse heart using adeno-associated virus (AAV) vectors and show that it can install desired mtDNA edits in adult and neonatal mice. This work provides proof-of-concept for use of DdCBEs to mutagenize mtDNA in vivo in post-mitotic tissues and provides crucial insights into potential translation to human somatic gene correction therapies to treat primary mitochondrial disease phenotypes.


Asunto(s)
ADN Mitocondrial/genética , Edición Génica/métodos , Genes Mitocondriales/genética , Terapia Genética/métodos , Enfermedades Mitocondriales/terapia , Animales , Dependovirus/genética , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Masculino , Ratones , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Modelos Animales , Mutagénesis , Mutación , Prueba de Estudio Conceptual
3.
Nucleic Acids Res ; 49(10): 5798-5812, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34037799

RESUMEN

Mitochondria contain their own translation apparatus which enables them to produce the polypeptides encoded in their genome. The mitochondrially-encoded RNA components of the mitochondrial ribosome require various post-transcriptional processing steps. Additional protein factors are required to facilitate the biogenesis of the functional mitoribosome. We have characterized a mitochondrially-localized protein, YbeY, which interacts with the assembling mitoribosome through the small subunit. Loss of YbeY leads to a severe reduction in mitochondrial translation and a loss of cell viability, associated with less accurate mitochondrial tRNASer(AGY) processing from the primary transcript and a defect in the maturation of the mitoribosomal small subunit. Our results suggest that YbeY performs a dual, likely independent, function in mitochondria being involved in precursor RNA processing and mitoribosome biogenesis. Issue Section: Nucleic Acid Enzymes.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/metabolismo , Ribonucleasas/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Secuencia de Aminoácidos , Supervivencia Celular/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Inmunohistoquímica , Espectrometría de Masas , Mitocondrias/enzimología , Mitocondrias/genética , Biosíntesis de Proteínas/genética , Alineación de Secuencia
4.
Nat Med ; 24(11): 1691-1695, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30250142

RESUMEN

Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin.


Asunto(s)
Edición Génica , Mitocondrias Cardíacas/genética , Enfermedades Mitocondriales/genética , Nucleasas con Dedos de Zinc/genética , Animales , ADN Mitocondrial/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Mitocondrias Cardíacas/patología , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/terapia , Mutación/genética , Pronóstico , ARN de Transferencia/genética , Nucleasas con Dedos de Zinc/uso terapéutico
5.
Nucleic Acids Res ; 44(16): 7804-16, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27466392

RESUMEN

Mitochondrial diseases are frequently associated with mutations in mitochondrial DNA (mtDNA). In most cases, mutant and wild-type mtDNAs coexist, resulting in heteroplasmy. The selective elimination of mutant mtDNA, and consequent enrichment of wild-type mtDNA, can rescue pathological phenotypes in heteroplasmic cells. Use of the mitochondrially targeted zinc finger-nuclease (mtZFN) results in degradation of mutant mtDNA through site-specific DNA cleavage. Here, we describe a substantial enhancement of our previous mtZFN-based approaches to targeting mtDNA, allowing near-complete directional shifts of mtDNA heteroplasmy, either by iterative treatment or through finely controlled expression of mtZFN, which limits off-target catalysis and undesired mtDNA copy number depletion. To demonstrate the utility of this improved approach, we generated an isogenic distribution of heteroplasmic cells with variable mtDNA mutant level from the same parental source without clonal selection. Analysis of these populations demonstrated an altered metabolic signature in cells harbouring decreased levels of mutant m.8993T>G mtDNA, associated with neuropathy, ataxia, and retinitis pigmentosa (NARP). We conclude that mtZFN-based approaches offer means for mtDNA heteroplasmy manipulation in basic research, and may provide a strategy for therapeutic intervention in selected mitochondrial diseases.


Asunto(s)
ADN Mitocondrial/genética , Endonucleasas/metabolismo , Mitocondrias/metabolismo , Mutación/genética , Dedos de Zinc , Línea Celular Tumoral , Citometría de Flujo , Dosificación de Gen , Humanos , ARN Catalítico/metabolismo
6.
Respir Res ; 10: 105, 2009 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-19891764

RESUMEN

BACKGROUND: Human embryonic stem cells (hESC) have the capacity to differentiate in vivo and in vitro into cells from all three germ lineages. The aim of the present study was to investigate the effect of specific culture conditions on the differentiation of hESC into lung epithelial cells. METHODS: Undifferentiated hESC, grown on a porous membrane in hESC medium for four days, were switched to a differentiation medium for four days; this was followed by culture in air-liquid interface conditions during another 20 days. Expression of several lung markers was measured by immunohistochemistry and by quantitative real-time RT-PCR at four different time points throughout the differentiation and compared to appropriate controls. RESULTS: Expression of CC16 and NKX2.1 showed a 1,000- and 10,000- fold increase at day 10 of differentiation. Other lung markers such as SP-C and Aquaporin 5 had the highest expression after twenty days of culture, as well as two markers for ciliated cells, FOXJ1 and beta-tubulin IV. The results from qRT-PCR were confirmed by immunohistochemistry on paraffin-embedded samples. Antibodies against CC16, SP-A and SP-C were chosen as specific markers for Clara Cells and alveolar type II cells. The functionality was tested by measuring the secretion of CC16 in the medium using an enzyme immunoassay. CONCLUSION: These results suggest that by using our novel culture protocol hESC can be differentiated into the major cell types of lung epithelial tissue.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/fisiología , Células Epiteliales/fisiología , Pulmón/fisiología , Acuaporina 5/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Células Madre Embrionarias/metabolismo , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/metabolismo , Técnica del Anticuerpo Fluorescente , Factores de Transcripción Forkhead/metabolismo , Humanos , Técnicas para Inmunoenzimas , Inmunohistoquímica , Pulmón/citología , Pulmón/metabolismo , Proteínas Nucleares/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor Nuclear Tiroideo 1 , Factores de Tiempo , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo , Uteroglobina/metabolismo , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA