Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
Hepatol Commun ; 8(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180987

RESUMEN

BACKGROUND: Mitochondrial hepatopathies (MHs) are primary mitochondrial genetic disorders that can present as childhood liver disease. No recognized biomarkers discriminate MH from other childhood liver diseases. The protein biomarkers growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 (FGF21) differentiate mitochondrial myopathies from other myopathies. We evaluated these biomarkers to determine if they discriminate MH from other liver diseases in children. METHODS: Serum biomarkers were measured in 36 children with MH (17 had a genetic diagnosis); 38 each with biliary atresia, α1-antitrypsin deficiency, and Alagille syndrome; 20 with NASH; and 186 controls. RESULTS: GDF15 levels compared to controls were mildly elevated in patients with α1-antitrypsin deficiency, Alagille syndrome, and biliary atresia-young subgroup, but markedly elevated in MH (p<0.001). FGF21 levels were mildly elevated in NASH and markedly elevated in MH (p<0.001). Both biomarkers were higher in patients with MH with a known genetic cause but were similar in acute and chronic presentations. Both markers had a strong performance to identify MH with a molecular diagnosis with the AUC for GDF15 0.93±0.04 and for FGF21 0.90±0.06. Simultaneous elevation of both markers >98th percentile of controls identified genetically confirmed MH with a sensitivity of 88% and specificity of 96%. In MH, independent predictors of survival without requiring liver transplantation were international normalized ratio and either GDF15 or FGF21 levels, with levels <2000 ng/L predicting survival without liver transplantation (p<0.01). CONCLUSIONS: GDF15 and FGF21 are significantly higher in children with MH compared to other childhood liver diseases and controls and, when combined, were predictive of MH and had prognostic implications.


Asunto(s)
Síndrome de Alagille , Atresia Biliar , Factor 15 de Diferenciación de Crecimiento , Enfermedad del Hígado Graso no Alcohólico , Niño , Humanos , Síndrome de Alagille/diagnóstico , Atresia Biliar/diagnóstico , Biomarcadores , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/química , Enfermedades Mitocondriales/diagnóstico
2.
JIMD Rep ; 64(3): 223-232, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37151360

RESUMEN

Disorders of mitochondrial function are a collectively common group of genetic diseases in which deficits in core mitochondrial translation machinery, including aminoacyl tRNA synthetases, are key players. Biallelic variants in the CARS2 gene (NM_024537.4), which encodes the mitochondrial aminoacyl-tRNA synthetase for cysteine (CARS2, mt-aaRScys; MIM*612800), result in childhood onset epileptic encephalopathy and complex movement disorder with combined oxidative phosphorylation deficiency (MIM#616672). Prior to this report, eight unique pathogenic variants in the CARS2 gene had been reported in seven individuals. Here, we describe a male who presented in the third week of life with apnoea. He rapidly deteriorated with paroxysmal dystonic crises and apnoea resulting in death at 16 weeks. He had no evidence of seizure activity or multisystem disease and had normal brain imaging. Skeletal muscle biopsy revealed a combined disorder of oxidative phosphorylation. Whole-exome sequencing identified biallelic variants in the CARS2 gene: one novel (c.1478T>C, p.Phe493Ser), and one previously reported (c.655G>A, p.Ala219Thr; rs727505361). Northern blot analysis of RNA isolated from the patient's fibroblasts confirmed a clear defect in aminoacylation of the mitochondrial tRNA for cysteine (mt-tRNACys). To our knowledge, this is the earliest reported case of CARS2 deficiency with severe, early onset dystonia and apnoea, without epilepsy.

3.
Hum Mutat ; 43(3): 305-315, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35026043

RESUMEN

Iron-sulfur cluster proteins are involved in critical functions for gene expression regulation and mitochondrial bioenergetics including the oxidative phosphorylation system. The c.215G>A p.(Arg72Gln) variant in NFS1 has been previously reported to cause infantile mitochondrial complex II and III deficiency. We describe three additional unrelated patients with the same missense variant. Two infants with the same homozygous variant presented with hypotonia, weakness and lactic acidosis, and one patient with compound heterozygous p.(Arg72Gln) and p.(Arg412His) variants presented as a young adult with gastrointestinal symptoms and fatigue. Skeletal muscle biopsy from patients 1 and 3 showed abnormal mitochondrial morphology, and functional analyses demonstrated decreased activity in respiratory chain complex II and variably in complexes I and III. We found decreased mitochondrial and cytosolic aconitase activities but only mildly affected lipoylation of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase enzymes. Our studies expand the phenotypic spectrum and provide further evidence for the pathogenicity and functional sequelae of NFS1-related disorders with disturbances in both mitochondrial and cytosolic iron-sulfur cluster containing enzymes.


Asunto(s)
Proteínas Hierro-Azufre , Hierro , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Azufre/metabolismo , Adulto Joven
4.
J Inherit Metab Dis ; 43(5): 1024-1036, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32160317

RESUMEN

Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4-year-old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh-like lesions on brain imaging. She died shortly after. Her 8-year-old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G > A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Enfermedad de Leigh/enzimología , Mitocondrias/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Quinona Reductasas/fisiología , Acidosis Láctica/patología , Encefalopatías/patología , Preescolar , Complejo IV de Transporte de Electrones/metabolismo , Familia , Femenino , Homocigoto , Humanos , Sulfuro de Hidrógeno/química , Cinética , Enfermedad de Leigh/metabolismo , Imagen por Resonancia Magnética , Masculino , Oxidación-Reducción , Quinona Reductasas/química
5.
Mol Genet Metab ; 130(1): 58-64, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32173240

RESUMEN

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal disorder characterized by progressive gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, skeletal myopathy, ophthalmoparesis, and ptosis. MNGIE stems from deficient thymidine phosphorylase activity (TP) leading to toxic elevations of plasma thymidine. Hematopoietic stem cell transplant (HSCT) restores TP activity and halts disease progression but has high transplant-related morbidity and mortality. Liver transplant (LT) was reported to restore TP activity in two adult MNGIE patients. We report successful LT in four additional MNGIE patients, including a pediatric patient. Our patients were diagnosed between ages 14 months and 36 years with elevated thymidine levels and biallelic pathogenic variants in TYMP. Two patients presented with progressive gastrointestinal dysmotility, and three demonstrated progressive peripheral neuropathy with two suffering limitations in ambulation. Two patients, including the child, had liver dysfunction and cirrhosis. Following LT, thymidine levels nearly normalized in all four patients and remained low for the duration of follow-up. Disease symptoms stabilized in all patients, with some manifesting improvements, including intestinal function. No patient died, and LT appeared to have a more favorable safety profile than HSCT, especially when liver disease is present. Follow-up studies will need to document the long-term impact of this new approach on disease outcome. Take Home Message: Liver transplantation is effective in stabilizing symptoms and nearly normalizing thymidine levels in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and may have an improved safety profile over hematopoietic stem cell transplant.


Asunto(s)
Trasplante de Hígado/métodos , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/terapia , Timidina Fosforilasa/genética , Adolescente , Adulto , Trastornos de la Motilidad Esofágica/genética , Femenino , Trasplante de Células Madre Hematopoyéticas/mortalidad , Humanos , Lactante , Trasplante de Hígado/mortalidad , Imagen por Resonancia Magnética , Masculino , Mitocondrias/enzimología , Mitocondrias/patología , Encefalomiopatías Mitocondriales/diagnóstico por imagen , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/fisiopatología , Enfermedades del Sistema Nervioso Periférico/genética , Timidina/sangre , Secuenciación del Exoma
6.
Neurol Genet ; 5(3): e336, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31192304

RESUMEN

OBJECTIVE: We developed a novel, hybrid method combining both blue-native (BN-PAGE) and clear-native (CN-PAGE) polyacrylamide gel electrophoresis, termed BCN-PAGE, to perform in-gel activity stains on the mitochondrial electron transport chain (ETC) complexes in skin fibroblasts. METHODS: Four patients aged 46-65 years were seen in the Metabolic Clinic at Alberta Children's Hospital and investigated for mitochondrial disease and had BN-PAGE or CN-PAGE on skeletal muscle that showed incomplete assembly of complex V (CV) in each patient. Long-range PCR performed on muscle-extracted DNA identified 4 unique mitochondrial DNA (mtDNA) deletions spanning the ATP6 gene of CV. We developed a BCN-PAGE method in skin fibroblasts taken from the patients at the same time and compared the findings with those in skeletal muscle. RESULTS: In all 4 cases, BCN-PAGE in skin fibroblasts confirmed the abnormal CV activity found from muscle biopsy, suggesting that the mtDNA deletions involving ATP6 were most likely germline mutations that are associated with a clinical phenotype of mitochondrial disease. CONCLUSIONS: The BCN-PAGE method in skin fibroblasts has a potential to be a less-invasive tool compared with muscle biopsy to screen patients for abnormalities in CV and other mitochondrial ETC complexes.

7.
J Inherit Metab Dis ; 42(3): 424-437, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30873612

RESUMEN

STUDY OBJECTIVE: A phase 1/2 clinical trial was performed in individuals with cystathionine ß synthase (CBS) deficient homocystinuria with aims to: (a) assess pharmacokinetics and safety of taurine therapy, (b) evaluate oxidative stress, inflammation, and vascular function in CBS deficiency, and (c) evaluate the impact of short-term taurine treatment. METHODS: Individuals with pyridoxine-nonresponsive CBS deficiency with homocysteine >50 µM, without inflammatory disorder or on antioxidant therapy were enrolled. Biomarkers of oxidative stress and inflammation, endothelial function (brachial artery flow-mediated dilation [FMD]), and disease-related metabolites obtained at baseline were compared to normal values. While maintaining current treatment, patients were treated with 75 mg/kg taurine twice daily, and treatment response assessed after 4 hours and 4 days. RESULTS: Fourteen patients (8-35 years; 8 males, 6 females) were enrolled with baseline homocysteine levels 161 ± 67 µM. The study found high-dose taurine to be safe when excluding preexisting hypertriglyceridemia. Taurine pharmacokinetics showed a rapid peak level returning to near normal levels at 12 hours, but had slow accumulation and elevated predosing levels after 4 days of treatment. Only a single parameter of oxidative stress, 2,3-dinor-8-isoprostaglandin-F2α, was elevated at baseline, with no elevated inflammatory parameters, and no change in FMD values overall. Taurine had no effect on any of these parameters. However, the effect of taurine was strongly related to pretreatment FMD values; and taurine significantly improved FMD in the subset of individuals with pretreatment FMD values <10% and in individuals with homocysteine levels >125 µM, pertinent to endothelial function. CONCLUSION: Taurine improves endothelial function in CBS-deficient homocystinuria in patients with preexisting reduced function.


Asunto(s)
Biomarcadores/metabolismo , Cistationina betasintasa/metabolismo , Homocistinuria/tratamiento farmacológico , Taurina/farmacocinética , Taurina/uso terapéutico , Adolescente , Adulto , Arteria Braquial/efectos de los fármacos , Niño , Cistationina betasintasa/deficiencia , Femenino , Homocisteína/metabolismo , Homocistinuria/genética , Humanos , Inflamación/tratamiento farmacológico , Masculino , Estrés Oxidativo/efectos de los fármacos , Estados Unidos , Adulto Joven
8.
Pediatr Nephrol ; 33(7): 1257-1261, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29637272

RESUMEN

BACKGROUND: Nephrotic syndrome can be caused by a subgroup of mitochondrial diseases classified as primary coenzyme Q10 (CoQ10) deficiency. Pathogenic COQ2 variants are a cause of primary CoQ10 deficiency and present with phenotypes ranging from isolated nephrotic syndrome to fatal multisystem disease. CASE-DIAGNOSIS/TREATMENT: We report three pediatric patients with COQ2 variants presenting with nephrotic syndrome. Two of these patients had normal leukocyte CoQ10 levels prior to treatment. Pathologic findings varied from mesangial sclerosis to focal segmental glomerulosclerosis, with all patients having abnormal appearing mitochondria on kidney biopsy. In two of the three patients treated with CoQ10 supplementation, the nephrotic syndrome resolved; and at follow-up, both have normal renal function and stable proteinuria. CONCLUSIONS: COQ2 nephropathy should be suspected in patients presenting with nephrotic syndrome, although less common than disease due to mutations in NPHS1, NPHS2, and WT1. The index of suspicion should remain high, and we suggest that providers consider genetic evaluation even in patients with normal leukocyte CoQ10 levels, as levels may be within normal range even with significant clinical disease. Early molecular diagnosis and specific treatment are essential in the management of this severe yet treatable condition.


Asunto(s)
Transferasas Alquil y Aril/genética , Ataxia/tratamiento farmacológico , Enfermedades Mitocondriales/tratamiento farmacológico , Debilidad Muscular/tratamiento farmacológico , Síndrome Nefrótico/terapia , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Ataxia/complicaciones , Ataxia/diagnóstico , Ataxia/genética , Biopsia , Niño , Preescolar , Pruebas Genéticas , Humanos , Riñón/patología , Trasplante de Riñón , Masculino , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Debilidad Muscular/complicaciones , Debilidad Muscular/diagnóstico , Debilidad Muscular/genética , Síndrome Nefrótico/sangre , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/etiología , Resultado del Tratamiento , Ubiquinona/administración & dosificación , Ubiquinona/genética
9.
Am J Hum Genet ; 102(4): 557-573, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576218

RESUMEN

Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.


Asunto(s)
Dominio Catalítico/genética , Metaloendopeptidasas/genética , Mutación/genética , Degeneración Nerviosa/genética , Niño , Preescolar , Dermis/patología , Transporte de Electrón , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Hierro-Azufre/genética , Imagen por Resonancia Magnética , Masculino , Mitocondrias/metabolismo , Linaje , Proto-Oncogenes Mas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Peptidasa de Procesamiento Mitocondrial
10.
Hum Mol Genet ; 26(4): 702-716, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28040730

RESUMEN

An infant presented with fatal infantile lactic acidosis and cardiomyopathy, and was found to have profoundly decreased activity of respiratory chain complex I in muscle, heart and liver. Exome sequencing revealed compound heterozygous mutations in NDUFB10, which encodes an accessory subunit located within the PD part of complex I. One mutation resulted in a premature stop codon and absent protein, while the second mutation replaced the highly conserved cysteine 107 with a serine residue. Protein expression of NDUFB10 was decreased in muscle and heart, and less so in the liver and fibroblasts, resulting in the perturbed assembly of the holoenzyme at the 830 kDa stage. NDUFB10 was identified together with three other complex I subunits as a substrate of the intermembrane space oxidoreductase CHCHD4 (also known as Mia40). We found that during its mitochondrial import and maturation NDUFB10 transiently interacts with CHCHD4 and acquires disulfide bonds. The mutation of cysteine residue 107 in NDUFB10 impaired oxidation and efficient mitochondrial accumulation of the protein and resulted in degradation of non-imported precursors. Our findings indicate that mutations in NDUFB10 are a novel cause of complex I deficiency associated with a late stage assembly defect and emphasize the role of intermembrane space proteins for the efficient assembly of complex I.


Asunto(s)
Acidosis Láctica , Cardiomiopatías , Complejo I de Transporte de Electrón/deficiencia , Trastornos de la Nutrición del Lactante , Mutación , NADH Deshidrogenasa , Acidosis Láctica/enzimología , Acidosis Láctica/genética , Cardiomiopatías/congénito , Cardiomiopatías/enzimología , Femenino , Humanos , Trastornos de la Nutrición del Lactante/enzimología , Trastornos de la Nutrición del Lactante/genética , Recién Nacido , Masculino , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo
11.
J Med Genet ; 52(8): 532-40, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25787132

RESUMEN

BACKGROUND: Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. METHODS AND RESULTS: We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNA(Cys) was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. CONCLUSIONS: Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Encefalopatías/genética , Epilepsia/genética , Secuencia de Aminoácidos , Aminoacilación , Niño , Análisis Mutacional de ADN , Exoma , Humanos , Masculino , Datos de Secuencia Molecular , ARN de Transferencia/metabolismo , Alineación de Secuencia
12.
Mol Genet Metab ; 103(4): 330-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21601502

RESUMEN

Cystathionine beta-synthase (CBS) deficient homocystinuria (HCU) is an inherited metabolic defect that if untreated, typically results in cognitive impairment, connective tissue disturbances, atherosclerosis and thromboembolic disease. In recent years, chronic inappropriate expression of the inflammatory response has emerged as a major driving force of both thrombosis and atherosclerotic lesion development. We report here a characterization of the abnormalities in cytokine expression induced in both a mouse model of HCU and human subjects with the disease in the presence and absence of homocysteine lowering therapy. HCU mice exhibited highly significant induction of the pro-inflammatory cytokines Il-1alpha, Il-1beta and TNF-alpha. Similarly, in untreated/poorly compliant human subjects with HCU we observed constitutive induction of multiple pro-inflammatory cytokines (IL-1alpha, IL-6, TNF-alpha, Il-17 and IL-12(p70)) and chemotactic chemokines (fractalkine, MIP-1alpha and MIP-1beta) compared to normal controls. These HCU patients also exhibited significant induction of IL-9, TGF-alpha and G-CSF. The expression levels of anti-inflammatory cytokines were unaffected in both HCU mice and human subjects with the disease. In the human subjects, homocysteine lowering therapy was associated with either normalization or significant reduction of all of the pro-inflammatory cytokines and chemokines investigated. We conclude that HCU is a disease of chronic inflammation and that aberrant cytokine expression has the potential to contribute to multiple aspects of pathogenesis. Our findings indicate that anti-inflammatory strategies could serve as a useful adjuvant therapy for this disease.


Asunto(s)
Quimiocinas/metabolismo , Cistationina betasintasa/genética , Homocistinuria/metabolismo , Adolescente , Adulto , Animales , Betaína/farmacología , Quimiocina CCL4/metabolismo , Niño , Preescolar , Cistationina betasintasa/deficiencia , Cistationina betasintasa/metabolismo , Femenino , Homocistinuria/terapia , Humanos , Interleucina-17/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Transgénicos , Factor de Necrosis Tumoral alfa/metabolismo
13.
Pediatr Res ; 68(2): 159-64, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20453710

RESUMEN

This patient presented on the first day of life with pronounced lactic acidosis with an elevated lactate/pyruvate ratio. Urine organic acids showed Krebs cycle metabolites and mildly elevated methylmalonate and methylcitrate. The acylcarnitine profile showed elevated propionylcarnitine and succinylcarnitine. Amino acids showed elevated glutamic acid, glutamine, proline, and alanine. From the age 2 of mo on, she had elevated transaminases and intermittent episodes of liver failure. Liver biopsy showed steatosis and a decrease of mitochondrial DNA to 50% of control. She had bilateral sensorineural hearing loss. Over the course of the first 2 y of life, she developed a progressively severe myopathy with pronounced muscle weakness eventually leading to respiratory failure, Leigh disease, and recurrent hepatic failure. The hepatic symptoms and the metabolic parameters temporarily improved on treatment with aspartate, but neither muscle symptoms nor brain lesions improved. Laboratory testing revealed a deficiency of succinyl-CoA ligase enzyme activity and protein in fibroblasts because of a novel homozygous mutation in the SUCLG1 gene: c.40A>T (p.M14L). Functional analysis suggests that this methionine is more likely to function as the translation initiator methionine, explaining the pathogenic nature of the mutation. Succinyl-CoA ligase deficiency due to an SUCLG1 mutation is a new cause for mitochondrial hepatoencephalomyopathy.


Asunto(s)
Encefalopatías Metabólicas , Hepatopatías , Enfermedades Mitocondriales , Succinato-CoA Ligasas/deficiencia , Secuencia de Aminoácidos , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatías Metabólicas/enzimología , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/patología , Análisis Mutacional de ADN , Resultado Fatal , Femenino , Humanos , Lactante , Recién Nacido , Enfermedad de Leigh/enzimología , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Hepatopatías/enzimología , Hepatopatías/genética , Hepatopatías/patología , Imagen por Resonancia Magnética , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Datos de Secuencia Molecular , Mutación , Succinato-CoA Ligasas/genética
14.
Am J Med Genet A ; 149A(5): 861-7, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19353676

RESUMEN

Progressive external ophthalmoplegia (PEO) can be caused by a disorder characterized by multiple mitochondrial DNA (mtDNA) deletions due to mutations in the TWINKLE gene, encoding a mtDNA helicase. We describe a 71-year-old woman who had developed PEO at age 55 years. She had cataracts, diabetes, paresthesias, cognitive defects, memory problems, hearing loss, and sensory ataxia. She had muscle weakness with ragged red fibers on biopsy. MRI showed static white matter changes. A c.908G>A substitution (p.R303Q) in the TWINKLE gene was identified. Multiple mtDNA deletions were detected in muscle but not blood by a PCR-based method, but not by Southern blot analysis. MtDNA copy number was maintained in blood and muscle. A systematic literature search was used to identify the genotypic and phenotypic spectrum of dominant TWINKLE-related disease. Patients were adults with PEO and symptoms including myopathy, neuropathy, dysarthria or dysphagia, sensory ataxia, and parkinsonism. Diabetes, cataract, memory loss, hearing loss, and cardiac problems were infrequent. All reported mutations clustered between amino acids 303 and 508 with no mutations at the N-terminal half of the gene. The TWINKLE gene should be analyzed in adults with PEO even in the absence of mtDNA deletions in muscle on Southern blot analysis, and of a family history for PEO. The pathogenic mutations identified 5' beyond the linker region suggest a functional role for this part of the protein despite the absence of a primase function in humans. In our patient, the pathogenesis involved multiple mtDNA deletions without reduction in mtDNA copy number.


Asunto(s)
ADN Helicasas/genética , ADN Mitocondrial/genética , Oftalmoplejía Externa Progresiva Crónica/diagnóstico , Oftalmoplejía Externa Progresiva Crónica/genética , Anciano , Secuencia de Aminoácidos , Secuencia Conservada , Análisis Mutacional de ADN , Ojo/patología , Femenino , Heterocigoto , Humanos , Proteínas Mitocondriales , Datos de Secuencia Molecular , Oftalmoplejía Externa Progresiva Crónica/patología , Eliminación de Secuencia
15.
Am J Med Genet A ; 137(2): 170-5, 2005 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-16059939

RESUMEN

Several mutations in mitochondrial transfer RNA (tRNA) genes can cause mitochondrial myopathy. We describe a young girl who presented with pronounced exercise intolerance. The anaerobic threshold and the maximal oxygen consumption were decreased. She had decreased complex I and IV enzyme activity and ragged red fibers on muscle biopsy. An A to G transition at nucleotide position 7526 in tRNA Aspartate (tRNA(Asp)) gene was heteroplasmic in several of the patient's tissues. We were unable to detect the mutation in muscle tissue from the patient's mother. This case adds a new genetic etiology for mitochondrial myopathy. It also illustrates for patients with combined deficiency of the complex I and IV enzyme activity the value of sequencing in the affected tissue muscle, and not only in blood, all mitochondrial tRNA genes including those not commonly affected, such as in this case mt tRNA(Asp).


Asunto(s)
ADN Mitocondrial/genética , Miopatías Mitocondriales/genética , Mutación , ARN de Transferencia de Aspártico/genética , Adulto , Secuencia de Bases , Biopsia , Análisis Mutacional de ADN , ADN Mitocondrial/química , Femenino , Humanos , Miopatías Mitocondriales/patología , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Mutación Puntual
16.
Am J Med Genet A ; 137(1): 22-6, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16007612

RESUMEN

Congenital disorder of glycosylation (CDG) type Ic, the second largest subtype of CDG, is caused by mutations in human ALG6 (hALG6). This gene encodes the alpha1,3-glucosyltransferase that catalyzes transfer of the first glucose residue to the lipid-linked oligosaccharide precursor for N-linked glycosylation. In this report, we describe the first adult patient diagnosed with CDG-Ic, carrying two previously unknown mutations. The first is a three base deletion (897-899delAAT) leading to the loss of I299, the second is an intronic mutation (IVS7 + 2T > G) that causes aberrant splicing. Wildtype hALG6, delivered by a lentiviral vector into patient's fibroblasts, clearly improves the biochemical phenotype, which confirms that the mutations are disease-causing. Striking clinical findings include limb deficiencies in the fingers, resembling brachydactyly type B, a deep vein thrombosis, pseudotumor cerebri, and endocrine disturbances with pronounced hyperandrogenism and virilization. However, even in adulthood, this patient shows normal magnetic resonance imaging of the brain.


Asunto(s)
Trastornos Congénitos de Glicosilación/patología , Glucosiltransferasas/genética , Proteínas de la Membrana/genética , Mutación , Adulto , Secuencia de Bases , Trastornos Congénitos de Glicosilación/genética , Análisis Mutacional de ADN , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Vectores Genéticos/genética , Glucosiltransferasas/metabolismo , Glicosilación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Transfección
17.
Am J Med Genet A ; 132A(2): 152-8, 2005 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-15558713

RESUMEN

Two siblings from a consanguineous family presented with a poikiloderma of limbs and face, plantar keratoderma, and toenail pachyonychia. Neutropenia and neutrophil dysfunction with impairment of the respiratory burst and bacterial killing resulted in frequent respiratory tract infections. A bronchocentric granulomatous pneumonia was a fatal complication. The clinical presentation is consistent with Clericuzio type poikiloderma with neutropenia. Literature review identified several additional probable patients. Genetic linkage analysis excluded the locus of the RECQL4 gene, mutations in which have been described in some patients with the Rothmund-Thomson poikiloderma syndrome. This report confirms the clinical and genetic identity of the Clericuzio type of poikiloderma with neutropenia syndrome.


Asunto(s)
Anomalías Múltiples/patología , Neutropenia/patología , Síndrome Rothmund-Thomson/patología , Anomalías Múltiples/genética , Niño , Preescolar , Consanguinidad , Diagnóstico Diferencial , Resultado Fatal , Femenino , Humanos , Masculino , Linaje , Hermanos , Síndrome
18.
Am J Med Genet A ; 118A(4): 382-7, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12687673

RESUMEN

Sanfilippo A syndrome, mucopolysaccharidosis type IIIA, is caused by a deficiency of heparan sulphamidase activity, and usually presents in childhood with neurodegeneration leading to death in teenage years. Visceral symptoms are limited to coarsening and diarrhea. We now describe an adult patient who presented with cardiomyopathy. At age 45 years she had hypertension, and the next year she developed a progressively worsening cardiomyopathy with prominent apical hypertrophy and atrial fibrillation. At age 53, she had severe concentric hypertrophic nonobstructive cardiomyopathy in both ventricles. There was no coarsening of features. Neurologic function, skeleton, cornea, liver, and spleen were normal. Percutaneous endomyocardial biopsy showed ballooned cardiomyocytes with storage vacuoles, containing acid mucopolysaccharides. Leucocytes, uterus, and brain biopsy did not show this storage material. There was a slight increase in total urine mucopolysaccharides, with an increased proportion of heparan sulfates. Heparan sulphamidase activity was deficient in leukocytes and heparan sulphamidase protein and activity were reduced in cultured fibroblasts. No mutations were identified after sequencing of the heparan sulphamidase gene at the cDNA and the genomic level. This new clinical presentation expands the clinical spectrum of Sanfilippo A syndrome to include a primary visceral presentation of cardiomyopathy without neurologic symptoms in the adult. The late onset may be related to the residual heparan sulphamidase activity. The genetic basis of this new variant is still unclear. Physicians evaluating adults must remain aware of possible new adult presentations of storage conditions.


Asunto(s)
Cardiomiopatías/patología , Mucopolisacaridosis III/patología , Cardiomiopatías/complicaciones , Cardiomiopatías/genética , Femenino , Fibroblastos/enzimología , Glicosaminoglicanos/orina , Heparitina Sulfato/orina , Humanos , Hidrolasas/deficiencia , Persona de Mediana Edad , Mucopolisacaridosis III/complicaciones , Mucopolisacaridosis III/genética
19.
Am J Med Genet ; 111(2): 195-201, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12210350

RESUMEN

Two siblings, a boy age 12 and his sister age 4 years, presented with proteinuria and hematuria, hypertension, and chronic hemolytic anemia. At age 13 years, the boy developed an episode of severe hypertensive encephalopathy and transient renal failure. Both children are attending normal school, have no neurologic symptoms, and only minimal pigmentary retinal abnormalities. Renal biopsy showed a chronic thrombotic microangiopathic nephropathy. Both patients had hyperhomocysteinemia and mild methylmalonic aciduria. Fibroblasts showed decreased cobalamin uptake, reduced methyl- and adenosyl-cobalamin formation, and deficient incorporation of formate and propionate, compatible with the Cbl-C complementation group, but milder than that found in cells from most patients. Both patients and their father carry a balanced reciprocal translocation. Parenteral hydroxycobalamin treatment reduced the homocysteine levels, and methylmalonic acid disappeared. Increasing the dosage of hydroxycobalamin from 1 to 2.5, then 5 mg daily together with betaine, further reduced homocysteine levels (boy from 118 to 23 microM and girl from 59 to 14 microM). With this treatment, hemolysis has stopped, hematuria has disappeared, proteinuria has almost normalized, and creatinine clearance has been stable. Investigations for chronic thrombotic microangiopathy should include testing for this unusual but treatable disorder, regardless of age of presentation.


Asunto(s)
Síndrome Hemolítico-Urémico/etiología , Trombosis/etiología , Deficiencia de Vitamina B 12/complicaciones , Edad de Inicio , Niño , Preescolar , Femenino , Hematínicos/uso terapéutico , Hematuria/prevención & control , Hemólisis/efectos de los fármacos , Síndrome Hemolítico-Urémico/diagnóstico , Síndrome Hemolítico-Urémico/metabolismo , Homocisteína/metabolismo , Humanos , Hidroxocobalamina/uso terapéutico , Riñón/patología , Masculino , Ácido Metilmalónico/metabolismo , Microcirculación/patología , Proteinuria/prevención & control , Trombosis/diagnóstico , Trombosis/metabolismo , Deficiencia de Vitamina B 12/diagnóstico , Deficiencia de Vitamina B 12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA