Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Exp Bot ; 75(11): 3612-3623, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38511472

RESUMEN

Desiccation tolerance evolved recurrently across diverse plant lineages to enable survival in water-limited conditions. Many resurrection plants are polyploid, and several groups have hypothesized that polyploidy contributed to the evolution of desiccation tolerance. However, due to the vast phylogenetic distance between resurrection plant lineages, the rarity of desiccation tolerance, and the prevalence of polyploidy in plants, this hypothesis has been difficult to test. Here, we surveyed natural variation in morphological, reproductive, and desiccation tolerance traits across several cytotypes of a single species to test for links between polyploidy and increased resilience. We sampled multiple natural populations of the resurrection grass Microchloa caffra across an environmental gradient ranging from mesic to xeric in South Africa. We describe two distinct ecotypes of M. caffra that occupy different extremes of the environmental gradient and exhibit consistent differences in ploidy, morphological, reproductive, and desiccation tolerance traits in both field and common growth conditions. Interestingly, plants with more polyploid genomes exhibited consistently higher recovery from desiccation, were less reproductive, and were larger than plants with smaller genomes and lower ploidy. These data indicate that selective pressures in increasingly xeric sites may play a role in maintaining and increasing desiccation tolerance and are mediated by changes in ploidy.


Asunto(s)
Poaceae , Poliploidía , Poaceae/genética , Poaceae/fisiología , Sudáfrica , Desecación , Adaptación Fisiológica/genética
2.
Genetics ; 225(1)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37338008

RESUMEN

The gene balance hypothesis proposes that selection acts on the dosage (i.e. copy number) of genes within dosage-sensitive portions of networks, pathways, and protein complexes to maintain balanced stoichiometry of interacting proteins, because perturbations to stoichiometric balance can result in reduced fitness. This selection has been called dosage balance selection. Dosage balance selection is also hypothesized to constrain expression responses to dosage changes, making dosage-sensitive genes (those encoding members of interacting proteins) experience more similar expression changes. In allopolyploids, where whole-genome duplication involves hybridization of diverged lineages, organisms often experience homoeologous exchanges that recombine, duplicate, and delete homoeologous regions of the genome and alter the expression of homoeologous gene pairs. Although the gene balance hypothesis makes predictions about the expression response to homoeologous exchanges, they have not been empirically tested. We used genomic and transcriptomic data from 6 resynthesized, isogenic Brassica napus lines over 10 generations to identify homoeologous exchanges, analyzed expression responses, and tested for patterns of genomic imbalance. Groups of dosage-sensitive genes had less variable expression responses to homoeologous exchanges than dosage-insensitive genes, a sign that their relative dosage is constrained. This difference was absent for homoeologous pairs whose expression was biased toward the B. napus A subgenome. Finally, the expression response to homoeologous exchanges was more variable than the response to whole-genome duplication, suggesting homoeologous exchanges create genomic imbalance. These findings expand our knowledge of the impact of dosage balance selection on genome evolution and potentially connect patterns in polyploid genomes over time, from homoeolog expression bias to duplicate gene retention.


Asunto(s)
Brassica napus , Brassica napus/genética , Genoma de Planta , Poliploidía , Perfilación de la Expresión Génica , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35082155

RESUMEN

Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH2O) g-1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive.


Asunto(s)
Adaptación Fisiológica/genética , Poaceae/genética , Desecación/métodos , Genómica/métodos , Hojas de la Planta/genética , Proteínas de Plantas/genética , Agua/metabolismo
4.
Am J Bot ; 108(11): 2269-2281, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34636416

RESUMEN

PREMISE: Polyploid species often have complex evolutionary histories that have, until recently, been intractable due to limitations of genomic resources. While recent work has further uncovered the evolutionary history of the octoploid strawberry (Fragaria L.), there are still open questions. Much is unknown about the evolutionary relationship of the wild octoploid species, Fragaria virginiana and Fragaria chiloensis, and gene flow within and among species after the formation of the octoploid genome. METHODS: We leveraged a collection of wild octoploid ecotypes of strawberry representing the recognized subspecies and ranging from Alaska to southern Chile, and a high-density SNP array to investigate wild octoploid strawberry evolution. Evolutionary relationships were interrogated with phylogenetic analysis and genetic clustering algorithms. Additionally, admixture among and within species is assessed with model-based and tree-based approaches. RESULTS: Phylogenetic analysis revealed that the two octoploid strawberry species are monophyletic sister lineages. The genetic clustering results show substructure between North and South American F. chiloensis populations. Additionally, model-based and tree-based methods support gene flow within and among the two octoploid species, including newly identified admixture in the Hawaiian F. chiloensis subsp. sandwicensis population. CONCLUSIONS: F. virginiana and F. chiloensis are supported as monophyletic and sister lineages. All but one of the subspecies show extensive paraphyly. Furthermore, phylogenetic relationships among F. chiloensis populations supports a single population range expansion southward from North America. The inter- and intraspecific relationships of octoploid strawberry are complex and suggest substantial gene flow between sympatric populations among and within species.


Asunto(s)
Fragaria , Américas , Fragaria/genética , Genoma de Planta , Filogenia , Poliploidía
5.
Genome Res ; 31(5): 799-810, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33863805

RESUMEN

The members of the tribe Brassiceae share a whole-genome triplication (WGT), and one proposed model for its formation is a two-step pair of hybridizations producing hexaploid descendants. However, evidence for this model is incomplete, and the evolutionary and functional constraints that drove evolution after the hexaploidy are even less understood. Here, we report a new genome sequence of Crambe hispanica, a species sister to most sequenced Brassiceae. Using this new genome and three others that share the hexaploidy, we traced the history of gene loss after the WGT using the Polyploidy Orthology Inference Tool (POInT). We confirm the two-step formation model and infer that there was a significant temporal gap between those two allopolyploidizations, with about a third of the gene losses from the first two subgenomes occurring before the arrival of the third. We also, for the 90,000 individual genes in our study, make parental subgenome assignments, inferring, with measured uncertainty, from which of the progenitor genomes of the allohexaploidy each gene derives. We further show that each subgenome has a statistically distinguishable rate of homoeolog losses. There is little indication of functional distinction between the three subgenomes: the individual subgenomes show no patterns of functional enrichment, no excess of shared protein-protein or metabolic interactions between their members, and no biases in their likelihood of having experienced a recent selective sweep. We propose a "mix and match" model of allopolyploidy, in which subgenome origin drives homoeolog loss propensities but where genes from different subgenomes function together without difficulty.


Asunto(s)
Genoma , Poliploidía , Evolución Molecular , Genoma de Planta , Humanos , Hibridación Genética , Filogenia
6.
New Phytol ; 230(1): 354-371, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33280122

RESUMEN

Allopolyploidisation merges evolutionarily distinct parental genomes (subgenomes) into a single nucleus. A frequent observation is that one subgenome is 'dominant' over the other subgenome, often being more highly expressed. Here, we 'replayed the evolutionary tape' with six isogenic resynthesised Brassica napus allopolyploid lines and investigated subgenome dominance patterns over the first 10 generations postpolyploidisation. We found that the same subgenome was consistently more dominantly expressed in all lines and generations and that >70% of biased gene pairs showed the same dominance patterns across all lines and an in silico hybrid of the parents. Gene network analyses indicated an enrichment for network interactions and several biological functions for the Brassica oleracea subgenome biased pairs, but no enrichment was identified for Brassica rapa subgenome biased pairs. Furthermore, DNA methylation differences between subgenomes mirrored the observed gene expression bias towards the dominant subgenome in all lines and generations. Many of these differences in gene expression and methylation were also found when comparing the progenitor genomes, suggesting that subgenome dominance is partly related to parental genome differences rather than just a byproduct of allopolyploidisation. These findings demonstrate that 'replaying the evolutionary tape' in an allopolyploid results in largely repeatable and predictable subgenome expression dominance patterns.


Asunto(s)
Brassica napus , Brassica rapa , Evolución Biológica , Brassica napus/genética , Brassica rapa/genética , Genoma de Planta/genética , Poliploidía
7.
Nat Commun ; 11(1): 884, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060277

RESUMEN

Teff (Eragrostis tef) is a cornerstone of food security in the Horn of Africa, where it is prized for stress resilience, grain nutrition, and market value. Here, we report a chromosome-scale assembly of allotetraploid teff (variety Dabbi) and patterns of subgenome dynamics. The teff genome contains two complete sets of homoeologous chromosomes, with most genes maintaining as syntenic gene pairs. TE analysis allows us to estimate that the teff polyploidy event occurred ~1.1 million years ago (mya) and that the two subgenomes diverged ~5.0 mya. Despite this divergence, we detect no large-scale structural rearrangements, homoeologous exchanges, or biased gene loss, in contrast to many other allopolyploids. The two teff subgenomes have partitioned their ancestral functions based on divergent expression across a diverse expression atlas. Together, these genomic resources will be useful for accelerating breeding of this underutilized grain crop and for fundamental insights into polyploid genome evolution.


Asunto(s)
Eragrostis/genética , Evolución Molecular , Genoma de Planta , África , Eragrostis/clasificación , Filogenia , Tetraploidía
8.
Curr Opin Plant Biol ; 54: 26-33, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31981929

RESUMEN

Plant genomes span several orders of magnitude in size, vary in levels of ploidy and heterozygosity, and contain old and recent bursts of transposable elements, which render them challenging but interesting to assemble. Recent advances in single molecule sequencing and physical mapping technologies have enabled high-quality, chromosome scale assemblies of plant species with increasing complexity and size. Single molecule reads can now exceed megabases in length, providing unprecedented opportunities to untangle genomic regions missed by short read technologies. However, polyploid and heterozygous plant genomes are still difficult to assemble but provide opportunities for new tools and approaches. Haplotype phasing, structural variant analysis and de novo pan-genomics are the emerging frontiers in plant genome assembly.


Asunto(s)
Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Elementos Transponibles de ADN , Genómica , Análisis de Secuencia de ADN
9.
Nat Genet ; 51(3): 541-547, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30804557

RESUMEN

Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria × ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene content, gene expression abundance, and biased exchanges between homoeologous chromosomes, as compared with the other subgenomes. Pathway analysis showed that certain metabolomic and disease-resistance traits are largely controlled by the dominant subgenome. These findings and the reference genome should serve as a powerful platform for future evolutionary studies and enable molecular breeding in strawberry.


Asunto(s)
Fragaria/genética , Genoma de Planta/genética , Cromosomas de las Plantas/genética , Diploidia , Evolución Molecular , Expresión Génica/genética , Hibridación Genética/genética , Fitomejoramiento/métodos , Poliploidía
10.
Gigascience ; 8(3)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30715294

RESUMEN

BACKGROUND: Highbush blueberry (Vaccinium corymbosum) has long been consumed for its unique flavor and composition of health-promoting phytonutrients. However, breeding efforts to improve fruit quality in blueberry have been greatly hampered by the lack of adequate genomic resources and a limited understanding of the underlying genetics encoding key traits. The genome of highbush blueberry has been particularly challenging to assemble due, in large part, to its polyploid nature and genome size. FINDINGS: Here, we present a chromosome-scale and haplotype-phased genome assembly of the cultivar "Draper," which has the highest antioxidant levels among a diversity panel of 71 cultivars and 13 wild Vaccinium species. We leveraged this genome, combined with gene expression and metabolite data measured across fruit development, to identify candidate genes involved in the biosynthesis of important phytonutrients among other metabolites associated with superior fruit quality. Genome-wide analyses revealed that both polyploidy and tandem gene duplications modified various pathways involved in the biosynthesis of key phytonutrients. Furthermore, gene expression analyses hint at the presence of a spatial-temporal specific dominantly expressed subgenome including during fruit development. CONCLUSIONS: These findings and the reference genome will serve as a valuable resource to guide future genome-enabled breeding of important agronomic traits in highbush blueberry.


Asunto(s)
Arándanos Azules (Planta)/genética , Evolución Molecular , Genoma de Planta , Haplotipos/genética , Fitoquímicos/genética , Tetraploidía , Antioxidantes/metabolismo , Vías Biosintéticas/genética , Cromosomas de las Plantas/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Anotación de Secuencia Molecular , Familia de Multigenes , Fitoquímicos/química , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
New Phytol ; 220(1): 87-93, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29882360

RESUMEN

Contents Summary 87 I. Introduction 87 II. Evolution in action: subgenome dominance within newly formed hybrids and polyploids 88 III. Summary and future directions 90 Acknowledgements 92 References 92 SUMMARY: The merger of divergent genomes, via hybridization or allopolyploidization, frequently results in a 'genomic shock' that induces a series of rapid genetic and epigenetic modifications as a result of conflicts between parental genomes. This conflict among the subgenomes routinely leads one subgenome to become dominant over the other subgenome(s), resulting in subgenome biases in gene content and expression. Recent advances in methods to analyze hybrid and polyploid genomes with comparisons to extant parental progenitors have allowed for major strides in understanding the mechanistic basis for subgenome dominance. In particular, our understanding of the role that homoeologous exchange might play in subgenome dominance and genome evolution is quickly growing. Here we describe recent discoveries uncovering the underlying mechanisms and provide a framework to predict subgenome dominance in hybrids and allopolyploids with far-reaching implications for agricultural, ecological, and evolutionary research.


Asunto(s)
Genoma de Planta , Hibridación Genética , Poliploidía , Epigénesis Genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas
12.
Curr Opin Plant Biol ; 42: 76-80, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29649616

RESUMEN

Whole genome duplications (WGDs), also known as polyploid events, have played a crucial role in the evolutionary success of angiosperms across recent and ancient timescales. A recurrent observation from the analysis of allopolyploids is that one of the parental subgenomes is generally more dominant, referred to as 'subgenome dominance', based on higher gene content and expression patterns. Subgenome dominance has far reaching implications to research areas ranging from crop improvement efforts to evolutionary and ecological studies. However, the analysis of subgenome dominance in more ancient polyploids is complicated by a long history of homoeologous exchanges among subgenomes. Here, we will discuss how resulting homoeolog rearrangements and replacements have been ignored in previous studies and urge future studies to integrate phylogenetic approaches to assign homoeologs to parental subgenomes.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Poliploidía , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Filogenia
13.
Nature ; 527(7579): 508-11, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26560029

RESUMEN

Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.


Asunto(s)
Genoma de Planta/genética , Poaceae/genética , Análisis de Secuencia de ADN/métodos , Aclimatación/genética , Mapeo Contig , Deshidratación , Desecación , Sequías , Genes de Plantas/genética , Genómica , Datos de Secuencia Molecular
14.
Curr Opin Plant Biol ; 24: 71-81, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25703261

RESUMEN

The availability of plant reference genomes has ushered in a new era of crop genomics. More than 100 plant genomes have been sequenced since 2000, 63% of which are crop species. These genome sequences provide insight into architecture, evolution and novel aspects of crop genomes such as the retention of key agronomic traits after whole genome duplication events. Some crops have very large, polyploid, repeat-rich genomes, which require innovative strategies for sequencing, assembly and analysis. Even low quality reference genomes have the potential to improve crop germplasm through genome-wide molecular markers, which decrease expensive phenotyping and breeding cycles. The next stage of plant genomics will require draft genome refinement, building resources for crop wild relatives, resequencing broad diversity panels, and plant ENCODE projects to better understand the complexities of these highly diverse genomes.


Asunto(s)
Productos Agrícolas/genética , Genoma de Planta , Genómica/tendencias , Fitomejoramiento
15.
Science ; 345(6201): 1181-4, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25190796

RESUMEN

Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.


Asunto(s)
Cafeína/genética , Coffea/genética , Evolución Molecular , Genoma de Planta , Metiltransferasas/fisiología , Proteínas de Plantas/fisiología , Cafeína/biosíntesis , Coffea/clasificación , Metiltransferasas/genética , Filogenia , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA