Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomed Microdevices ; 10(2): 299-308, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17994280

RESUMEN

We report on development and experimental characterization of a novel cell manipulation device-the electrosonic ejector microarray-which establishes a pathway for drug and/or gene delivery with control of biophysical action on the length scale of an individual cell. The device comprises a piezoelectric transducer for ultrasound wave generation, a reservoir for storing the sample mixture and a set of acoustic horn structures that form a nozzle array for focused application of mechanical energy. The nozzles are micromachined in silicon or plastic using simple and economical batch fabrication processes. When the device is driven at a particular resonant frequency of the acoustic horn structures, the sample mixture of cells and desired transfection agents/molecules suspended in culture medium is ejected from orifices located at the nozzle tips. During sample ejection, focused mechanical forces (pressure and shear) are generated on a microsecond time scale (dictated by nozzle size/geometry and ejection velocity) resulting in identical "active" microenvironments for each ejected cell. This process enables a number of cellular bioeffects, from uptake of small molecules and gene delivery/transfection to cell lysis. Specifically, we demonstrate successful calcein uptake and transfection of DNA plasmid encoding green fluorescent protein (GFP) into human malignant glioma cells (cell line LN443) using electrosonic microarrays with 36, 45 and 50 mum diameter nozzle orifices and operating at ultrasound frequencies between 0.91 and 0.98 MHz. Our results suggest that efficacy and the extent of bioeffects are mainly controlled by nozzle orifice size and the localized intensity of the applied acoustic field.


Asunto(s)
Acústica/instrumentación , Separación Celular/instrumentación , Sistemas de Liberación de Medicamentos/instrumentación , Inyecciones a Chorro/instrumentación , Análisis por Micromatrices/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Transfección/instrumentación , Separación Celular/métodos , Sistemas de Liberación de Medicamentos/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Inyecciones a Chorro/métodos , Análisis por Micromatrices/métodos , Micromanipulación/instrumentación , Micromanipulación/métodos , Transfección/métodos
2.
Anal Chem ; 79(21): 8154-61, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17914864

RESUMEN

The analytical characterization of a novel ion source for mass spectrometry named array of micromachined ultrasonic electrosprays (AMUSE) is presented here. This is a fundamentally different type of ion generation device, consisting of three major components: (1) a piezoelectric transducer that creates ultrasonic waves at one of the resonant frequencies of the sample-filled device, (2) an array of pyramidally shaped nozzles micromachined on a silicon wafer, and (3) a spacer which prevents contact between the array and transducer ensuring the transfer of acoustic energy to the sample. A high-pressure gradient generated at the apexes of the nozzle pyramids forces the periodic ejection of multiple droplet streams from the device. With this device, the processes of droplet formation and droplet charging are separated; hence, the limitations of conventional electrospray-type ion sources, including the need for high charging potentials and the addition of organic solvent to decrease surface tension, can be avoided. In this work, a Venturi device is coupled with AMUSE in order to increase desolvation, droplet focusing, and signal stability. Results show that ionization of model peptides and small tuning molecules is possible with dc charging potentials of 100 Vdc or less. Ionization in rf-only mode (without dc biasing) was also possible. It was observed that, when combined with AMUSE, the Venturi device provides a 10-fold gain in signal-to-noise ratio for 90% aqueous sample solutions. Further reduction in the diameter of the orifices of the micromachined arrays led to an additional signal gain of at least 3 orders of magnitude, a 2-10-fold gain in the signal-to-noise ratio and an improvement in signal stability from 47% to 8.5% RSD. The effectiveness of this device for the soft ionization of model proteins in aqueous media, such as cytochrome c, was also examined, yielding spectra with an average charge state of 8.8 when analyzed with a 100 Vdc charging potential. Ionization of model proteins was also possible in rf-only mode.


Asunto(s)
Péptidos/análisis , Proteínas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Ultrasonido , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Silicio/química , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA