Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Food Biochem ; 46(12): e14429, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36153825

RESUMEN

The goal of this study was to evaluate how glucose and fructose affected the adipose differentiation of pig newborn mesenchymal stem cells (MSCs). Cells were grown with or without inosine in 7.5 mM glucose (substituted with 1.5 or 6 mM fructose). MSCs displayed adipose morphology after 70 days of differentiation. Fructose stimulated the highest levels of PPARγ and C/EBPß. Fructose at 6 mM, but not glucose at 7.5 mM or fructose at 1.5 mM, promotes differentiation of MSCs into adipocytes and increases 11-hydroxysteroid dehydrogenase (11ß-HSD1) and NADPH oxidase 4 (NOX4) mRNA in the absence of hepatic effects (as simulated by the inosine). Fructose and glucose increased xanthine oxide-reductase (XOR) catalytic activity almost 10-fold and elevated their products: intracellular reactive oxygen species (ROS) pool, extracellular H2 O2 pool by 4 orders of magnitude, and uric acid by a factor of 10. Therefore, in our experimental model, differentiation of MSCs into adipocytes occurs exclusively at the blood concentration of fructose detected after ingestion by people on a high fructose diet. PRACTICAL APPLICATIONS: The results of this study provide new evidence for fructose's adipogenic potential in mesenchymal stem cells, a model in which its effects on XOR activity had not been studied. The increased expression of genes such as C/EBPß, PPARγ, and NOX4, as well as the increased XOR activity and high production of ROS during the differentiation process in the presence of fructose, coincides in pointing to this hexose as an important factor in the development of adipogenesis in young animals, which could have a great impact on the development of future obesity.


Asunto(s)
Glucosa , Células Madre Mesenquimatosas , Animales , Porcinos , Fructosa/farmacología , Especies Reactivas de Oxígeno/metabolismo , PPAR gamma/metabolismo , Diferenciación Celular , Obesidad
2.
Front Genet ; 12: 654256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306008

RESUMEN

The structure of eukaryotic genes is generally a combination of exons interrupted by intragenic non-coding DNA regions (introns) removed by RNA splicing to generate the mature mRNA. A fraction of genes, however, comprise a single coding exon with introns in their untranslated regions or are intronless genes (IGs), lacking introns entirely. The latter code for essential proteins involved in development, growth, and cell proliferation and their expression has been proposed to be highly specialized for neuro-specific functions and linked to cancer, neuropathies, and developmental disorders. The abundant presence of introns in eukaryotic genomes is pivotal for the precise control of gene expression. Notwithstanding, IGs exempting splicing events entail a higher transcriptional fidelity, making them even more valuable for regulatory roles. This work aimed to infer the functional role and evolutionary history of IGs centered on the mouse genome. IGs consist of a subgroup of genes with one exon including coding genes, non-coding genes, and pseudogenes, which conform approximately 6% of a total of 21,527 genes. To understand their prevalence, biological relevance, and evolution, we identified and studied 1,116 IG functional proteins validating their differential expression in transcriptomic data of embryonic mouse telencephalon. Our results showed that overall expression levels of IGs are lower than those of MEGs. However, strongly up-regulated IGs include transcription factors (TFs) such as the class 3 of POU (HMG Box), Neurog1, Olig1, and BHLHe22, BHLHe23, among other essential genes including the ß-cluster of protocadherins. Most striking was the finding that IG-encoded BHLH TFs fit the criteria to be classified as microproteins. Finally, predicted protein orthologs in other six genomes confirmed high conservation of IGs associated with regulating neural processes and with chromatin organization and epigenetic regulation in Vertebrata. Moreover, this study highlights that IGs are essential modulators of regulatory processes, such as the Wnt signaling pathway and biological processes as pivotal as sensory organ developing at a transcriptional and post-translational level. Overall, our results suggest that IG proteins have specialized, prevalent, and unique biological roles and that functional divergence between IGs and MEGs is likely to be the result of specific evolutionary constraints.

3.
Interface Focus ; 11(4): 20200072, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34123356

RESUMEN

Glioblastoma (GBM) is the most aggressive and common brain cancer in adults with the lowest life expectancy. The current neuro-oncology practice has incorporated genes involved in key molecular events that drive GBM tumorigenesis as biomarkers to guide diagnosis and design treatment. This study summarizes findings describing the significant heterogeneity of GBM at the transcriptional and genomic levels, emphasizing 18 driver genes with clinical relevance. A pattern was identified fitting the stem cell model for GBM ontogenesis, with an upregulation profile for MGMT and downregulation for ATRX, H3F3A, TP53 and EGFR in the mesenchymal subtype. We also detected overexpression of EGFR, NES, VIM and TP53 in the classical subtype and of MKi67 and OLIG2 genes in the proneural subtype. Furthermore, we found a combination of the four biomarkers EGFR, NES, OLIG2 and VIM with a remarkable differential expression pattern which confers them a strong potential to determine the GBM molecular subtype. A unique distribution of somatic mutations was found for the young and adult population, particularly for genes related to DNA repair and chromatin remodelling, highlighting ATRX, MGMT and IDH1. Our results also revealed that highly lesioned genes undergo differential regulation with particular biological pathways for young patients. This multi-omic analysis will help delineate future strategies related to the use of these molecular markers for clinical decision-making in the medical routine.

4.
Sci Rep ; 10(1): 6589, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313033

RESUMEN

The aim of this study was to improve knowledge of the mutational spectrum causing tuberous sclerosis complex (TSC) in a sample of Mexican patients, given the limited information available regarding this disease in Mexico and Latin America. Four different molecular techniques were implemented to identify from single nucleotide variants to large rearrangements in the TSC1 and TSC2 genes of 66 unrelated Mexican-descent patients that clinically fulfilled the criteria for a definitive TSC diagnosis. The mutation detection rate was 94%, TSC2 pathogenic variants (PV) prevailed over TSC1 PV (77% vs. 23%) and a recurrent mutation site (hotspot) was observed in TSC1 exon 15. Interestingly, 40% of the identified mutations had not been previously reported. The wide range of novels PV made it difficult to establish any genotype-phenotype correlation, but most of the PV conditioned neurological involvement (intellectual disability and epilepsy). Our 3D protein modeling of two variants classified as likely pathogenic demonstrated that they could alter the structure and function of the hamartin (TSC1) or tuberin (TSC2) proteins. Molecular analyses of parents and first-degree affected family members of the index cases enabled us to distinguish familial (18%) from sporadic (82%) cases and to identify one case of apparent gonadal mosaicism.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Esclerosis Tuberosa/genética , Adolescente , Niño , Preescolar , Análisis Mutacional de ADN , Epilepsia/genética , Epilepsia/patología , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , México/epidemiología , Mutación/genética , Fenotipo , Esclerosis Tuberosa/epidemiología , Esclerosis Tuberosa/patología , Adulto Joven
5.
Nutrients ; 11(7)2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319484

RESUMEN

This study analyzes an oral supplement of molecular iodine (I2), alone and in combination with the neoadjuvant therapy 5-fluorouracil/epirubicin/cyclophosphamide or taxotere/epirubicin (FEC/TE) in women with Early (stage II) and Advanced (stage III) breast cancer. In the Early group, 30 women were treated with I2 (5 mg/day) or placebo (colored water) for 7-35 days before surgery. For the Advanced group, 30 patients received I2 or placebo, along with FEC/TE treatment. After surgery, all patients received FEC/TE + I2 for 170 days. I2 supplementation showed a significant attenuation of the side effects and an absence of tumor chemoresistance. The control, I2, FEC/TE, and FEC/TE + I2 groups exhibited response rates of 0, 33%, 73%, and 100%, respectively, and a pathologic complete response of 18%, and 36% in the last two groups. Five-year disease-free survival rate was significantly higher in patients treated with the I2 supplement before and after surgery compared to those receiving the supplement only after surgery (82% versus 46%). I2-treated tumors exhibit less invasive potential, and significant increases in apoptosis, estrogen receptor expression, and immune cell infiltration. Transcriptomic analysis indicated activation of the antitumoral immune response. The results led us to register a phase III clinical trial to analyze chemotherapy + I2 treatment for advanced breast cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Yodo/administración & dosificación , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/cirugía , Supervivencia sin Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Proyectos Piloto , Oligoelementos/administración & dosificación
6.
Neuroendocrinology ; 106(3): 221-233, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28571011

RESUMEN

BACKGROUND/AIMS: Studies on the biological actions of vasoinhibins have focused mainly on endothelial cells. However, there is incipient knowledge about how vasoinhibins affect the nervous system, even if the target cells and mechanisms of action involved in these effects are unknown. METHODS: In order to determine if neurons are direct targets of vasoinhibins, we examined cellular outcomes and the intracellular pathways involved in the neuronal actions of vasoinhibins using newborn rat dorsal root ganglion (DRG) neurons as a model system. RESULTS: Vascular endothelial growth factor (VEGF) or nerve growth factor (NGF) treatment for 48 h resulted in neurite outgrowth stimulation in both DRG cultured explants and isolated primary sensory neurons. Interestingly, a recombinant vasoinhibin containing the first 123 amino acids of human prolactin antagonized the VEGF- and NGF-induced stimulation of neurite outgrowth. Vasoinhibin significantly reduced the density of neurites in DRG explants and obliterated neuritogenesis in isolated DRG neurons in primary culture, supporting a direct neuronal effect of vasoinhibin. In cultures of isolated DRG cells, virtually all ß3-tubulin-labeled cells express TrkA, and the majority of these cells also express VEGFR2. Short-term VEGF or NGF treatment of DRG explants resulted in increased ERK1/2 and AKT phosphorylation, whereas incubation of DRG with the combination of either VEGF or NGF together with vasoinhibin resulted in blunted VEGF- or NGF-induced phosphorylation of both ERK1/2 and AKT. CONCLUSION: Our results show that primary sensory neurons are direct targets of vasoinhibin, and suggest that vasoinhibin inhibition of neurite outgrowth involves the disruption of ERK and AKT phosphorylation cascades.


Asunto(s)
Ganglios Espinales/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Proyección Neuronal/fisiología , Prolactina/metabolismo , Células Receptoras Sensoriales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Femenino , Ganglios Espinales/efectos de los fármacos , Humanos , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor de Crecimiento Nervioso/administración & dosificación , Proyección Neuronal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Prolactina/genética , Prolactina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Proteínas Recombinantes/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/administración & dosificación
7.
Cells Tissues Organs ; 203(3): 153-172, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27643621

RESUMEN

PURPOSE: The aim of this work was to evaluate the effect of PPAR agonists on the differentiation and metabolic features of porcine mesenchymal stem cells induced to the adipogenic or myogenic lineages. METHODS: Bone marrow MSCs from neonate pigs were isolated and identified by cell proliferation, cell surface markers or the gene expression of stem cells (CD44, CD90, CD105 or Oct4 and Nanog, respectively). Cells were differentiated into adipose or muscle cells and treated with the PPAR agonists; adipogenic and myogenic differentiation was promoted by adding these compounds. The expression of PPARγ (an adipose marker) and MyoD1 and MyHC (muscle markers), metabolic changes and expression levels of metabolic enzymes involved in glycolysis, lipogenesis, lipolysis and the pentose phosphate pathway were tested by qPCR. RESULTS: MSCs from neonate pigs exhibited high proliferation and were positive for CD44, CD90 and CD105 markers and Oct4 and Nanog expression. The treatment that promoted the highest expression of PPARγ was 50 µM of conjugated linoleic acid (CLA) c9 t11 (6.44 ± 0.69-fold, p ≤ 0.0001) in the adipose differentiation, and upregulation of HX2, ACCAα, ATGL, LPL and G6DP (p ≤ 0.0001) and downregulation of PFK and ACCAß (p ≤ 0.0001) were found. For muscle differentiation, the best treatment was 50 µM of CLA c10 t12 (59.72 ± 4.72-fold, p ≤ 0.0001), and metabolic changes were upregulation of PFK, ACCAß, G6DP, CPT1 and PPARß/δ (p ≤ 0.0001), but no effect was observed with HX2 and ACCAα (p ≥ 0.05). CONCLUSIONS: Our results suggest that differentiated cells exhibit a typical cell lineage metabolism and higher efficiencies both in anabolism and catabolism.


Asunto(s)
Adipogénesis , Células de la Médula Ósea/citología , Diferenciación Celular , Linaje de la Célula , Células Madre Mesenquimatosas/citología , Desarrollo de Músculos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Animales , Animales Recién Nacidos , Recuento de Células , Proliferación Celular , Separación Celular , Forma de la Célula , Células Cultivadas , Electroforesis en Gel de Agar , Genotipo , Fenotipo , Sus scrofa
8.
J Membr Biol ; 250(1): 41-52, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27550074

RESUMEN

Shock waves are known to permeabilize eukaryotic cell membranes, which may be a powerful tool for a variety of drug delivery applications. However, the mechanisms involved in shock wave-mediated membrane permeabilization are still poorly understood. In this study, the effects on both the permeability and the ultrastructural features of two human cell lineages were investigated after the application of underwater shock waves in vitro. Scanning Electron Microscopy of cells derived from a human embryo kidney (HEK)-293 and Michigan Cancer Foundation (MCF)-7 cells, an immortalized culture derived from human breast adenocarcinoma, showed a small amount of microvilli (as compared to control cells), the presence of hole-like structures, and a decrease in cell size after shock wave exposure. Interestingly, these effects were accompanied by the permeabilization of acid and macromolecular dyes and gene transfection. Trypan blue exclusion assays indicated that cell membranes were porated during shock wave treatment but resealed after a few seconds. Deformations of the cell membrane lasted for at least 5 min, allowing their observation in fixed cells. For each cell line, different shock wave parameters were needed to achieve cell membrane poration. This difference was correlated to successful gene transfection by shock waves. Our results demonstrate, for the first time, that shock waves induce transient micro- and submicrosized deformations at the cell membrane, leading to cell transfection and cell survival. They also indicate that ultrastructural analyses of cell surfaces may constitute a useful way to match the use of shock waves to different cells and settings.


Asunto(s)
Membrana Celular , Células Eucariotas , Ondas de Choque de Alta Energía , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular , Supervivencia Celular , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Células HEK293 , Ondas de Choque de Alta Energía/efectos adversos , Humanos , Células MCF-7 , Transfección
9.
FEBS J ; 284(2): 258-276, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27865066

RESUMEN

Spatiotemporal regulation of cAMP within the cell is required to achieve receptor-specific responses. The mechanism through which the cell selects a specific response to newly synthesized cAMP is not fully understood. In hepatocyte plasma membranes, we identified two functional and independent cAMP-responsive signaling protein macrocomplexes that produce, use, degrade, and regulate their own nondiffusible (sequestered) cAMP pool to achieve their specific responses. Each complex responds to the stimulation of an adenosine G protein-coupled receptor (Ado-GPCR), bound to either A2A or A2B , but not simultaneously to both. Each isoprotein involved in each signaling cascade was identified by measuring changes in cAMP levels after receptor activation, and its participation was confirmed by antibody-mediated inactivation. A2A -Ado-GPCR selective stimulation activates adenylyl cyclase 6 (AC6), which is bound to AKAP79/150, to synthesize cAMP which is used by two other AKAP79/150-tethered proteins: protein kinase A (PKA) and phosphodiesterase 3A (PDE3A). In contrast, A2B -Ado-GPCR stimulation activates D-AKAP2-attached AC5 to generate cAMP, which is channeled to two other D-AKAP2-tethered proteins: guanine-nucleotide exchange factor 2 (Epac2) and PDE3B. In both cases, prior activation of PKA or Epac2 with selective cAMP analogs prevents de novo cAMP synthesis. In addition, we show that cAMP does not diffuse between these protein macrocomplexes or 'signalosomes'. Evidence of coimmunoprecipitation and colocalization of some proteins belonging to each signalosome is presented. Each signalosome constitutes a minimal functional signaling unit with its own machinery to synthesize and regulate a sequestered cAMP pool. Thus, each signalosome is devoted to ensure the transmission of a unique and unequivocal message through the cell.


Asunto(s)
Adenilil Ciclasas/metabolismo , AMP Cíclico/biosíntesis , Hepatocitos/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2B/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Adenilil Ciclasas/genética , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hepatocitos/citología , Masculino , Cultivo Primario de Células , Ratas , Ratas Wistar , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2B/genética
10.
Cells Tissues Organs ; 201(1): 51-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26565958

RESUMEN

PURPOSE: We evaluated the effect of peroxisome proliferator-activated receptor (PPAR) agonists on the differentiation and metabolic features of bovine bone marrow-derived mesenchymal cells induced to adipogenic or myogenic lineages. METHODS: Cells isolated from 7-day-old calves were cultured in basal medium (BM). For adipogenic differentiation, cells were cultured for one passage in BM and then transferred to a medium supplemented with either rosiglitazone, telmisartan, sirtinol or conjugated c-9, t-11 linoleic acid; for myogenic differentiation, third-passage cells were added with either bezafibrate, telmisartan or sirtinol. The expression of PPARx03B3; (an adipogenic differentiation marker), myosin heavy chain (MyHC; a myogenic differentiation marker) and genes related to energy metabolism were measured by quantitative real-time PCR in a completely randomized design. RESULTS: For adipogenic differentiation, 20 µM telmisartan showed the highest PPARx03B3; expression (15.58 ± 0.62-fold, p < 0.0001), and differences in the expression of energy metabolism-related genes were found for hexokinase II, phosphofructokinase, adipose triglyceride lipase, acetyl-CoA carboxylase α(ACACα) and fatty acid synthase (p < 0.001), but not for ACACß (p = 0.4275). For myogenic differentiation, 200 µM bezafibrate showed the highest MyHC expression (73.98 ± 11.79-fold), and differences in the expression of all energy metabolism-related genes were found (p < 0.05). CONCLUSIONS: Adipocyte and myocyte differentiation are enhanced with telmisartan and bezafibrate, respectively, and energy uptake, storage and mobilization are improved with both.


Asunto(s)
Adipogénesis/efectos de los fármacos , Metabolismo Energético/genética , Células Madre Mesenquimatosas/citología , Desarrollo de Músculos/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Adipocitos/citología , Adipogénesis/fisiología , Animales , Benzamidas/farmacología , Bencimidazoles/farmacología , Benzoatos/farmacología , Bezafibrato/farmacología , Células de la Médula Ósea/citología , Bovinos , Linaje de la Célula/fisiología , Metabolismo Energético/fisiología , Ácidos Linoleicos/farmacología , Desarrollo de Músculos/fisiología , Cadenas Pesadas de Miosina/biosíntesis , Naftoles/farmacología , PPAR gamma/biosíntesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Rosiglitazona , Telmisartán , Tiazolidinedionas/farmacología
11.
Mol Ther ; 21(8): 1579-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23732989

RESUMEN

Cell therapy in animal models of Parkinson's disease (PD) is effective after intrastriatal grafting of dopamine (DA) neurons, whereas intranigral transplantation of dopaminergic cells does not cause consistent behavioral recovery. One strategy to promote axonal growth of dopaminergic neurons from the substantia nigra (SN) to the striatum is degradation of inhibitory components such as chondroitin sulphate proteoglycans (CSPG). An alternative is the guidance of DA axons by chemotropic agents. Semaphorins 3A and 3C enhance axonal growth of embryonic stem (ES) cell-derived dopaminergic neurons in vitro, while Semaphorin 3C also attracts them. We asked whether intranigral transplantation of DA neurons, combined with either degradation of CSPG or with grafts of Semaphorin 3-expressing cells, towards the striatum, is effective in establishing a new nigrostriatal dopaminergic pathway in rats with unilateral depletion of DA neurons. We found depolarization-induced DA release in dorsal striatum, DA axonal projections from SN to striatum, and concomitant behavioral improvement in Semaphorin 3-treated animals. These effects were absent in animals that received intranigral transplants combined with Chondroitinase ABC treatment, although partial degradation of CSPG was observed. These results are evidence that Semaphorin 3-directed long-distance axonal growth of dopaminergic neurons, resulting in behavioral improvement, is possible in adult diseased brains.


Asunto(s)
Axones/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/trasplante , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/terapia , Semaforinas/metabolismo , Animales , Diferenciación Celular , Línea Celular , Cuerpo Estriado/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Células HEK293/metabolismo , Células HEK293/trasplante , Humanos , Ratones , Oxidopamina/metabolismo , Trastornos Parkinsonianos/fisiopatología , Ratas , Prueba de Desempeño de Rotación con Aceleración Constante , Semaforinas/genética , Sustancia Negra , Transmisión Sináptica , Transfección
12.
J Mater Sci Mater Med ; 22(9): 2097-109, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21744103

RESUMEN

Chemotropic proteins guide neuronal projections to their final target during embryo development and are useful to guide axons of neurons used in transplantation therapies. Site-specific delivery of the proteins however is needed for their application in the brain to avoid degradation and pleiotropic affects. In the present study we report the use of Poly (ethylene glycol)-Silica (PEG-Si) nanocomposite gel with thixotropic properties that make it injectable and suitable for delivery of the chemotropic protein semaphorin 3A. PEG-Si gel forms a functional gradient of semaphorin that enhances axon outgrowth of dopaminergic neurons from rat embryos or differentiated from stem cells in culture. It is not cytotoxic and its properties allowed its injection into the striatum without inflammatory response in the short term. Long term implantation however led to an increase in macrophages and glial cells. The inflammatory response could have resulted from non-degraded silica particles, as observed in biodegradation assays.


Asunto(s)
Dopamina/metabolismo , Nanoestructuras , Neuronas/citología , Animales , Materiales Biocompatibles , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Neuronas/metabolismo , Polietilenglicoles , Ratas , Proteínas Recombinantes/administración & dosificación , Semaforina-3A/administración & dosificación , Espectrometría Raman
13.
J Neurosci Res ; 88(5): 971-80, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19859963

RESUMEN

Class 3 Semaphorins are a subfamily of chemotropic molecules implicated in the projection of dopaminergic neurons from the ventral mesencephalon and in the formation of the nigrostriatal pathway (NSP) during embryonic development. In humans, loss of mesencephalic dopaminergic neurons leads to Parkinson's disease (PD). Cell replacement therapy with dopaminergic neurons generated from embryonic stem cells (ES-TH(+)) is being actively explored in models of PD. Among several requisites for this approach to work are adequate reconstruction of the NSP and correct innervation of normal striatal targets by dopaminergic axons. In this work, we characterized the response of ES-TH(+) neurons to semaphorins 3A, 3C, and 3F and compared it with that of tyrosine hidroxylase-positive neurons (TH(+)) obtained from embryonic ventral mesencephalon (VM-TH(+)). We observed that similar proportions of ES-TH(+) and VM-TH(+) neurons express semaphorin receptors neuropilins 1 and 2. Furthermore, the axons of both populations responded very similarly to semaphorin exposure: semaphorin 3A increased axon length, and semaphorin 3C attracted axons and increased their length. These effects were mediated by neuropilins, insofar as addition of blocking antibodies against these proteins reduced the effects on axonal growth and attraction, and only TH(+) axons expressing neuropilins responded to the semaphorins analyzed. The observations reported here show phenotypic similarities between VM-TH(+) and ES-TH(+) neurons and suggest that semaphorins 3A and 3C could be employed to guide axons of grafted ES-TH(+) in therapeutic protocols for PD.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Conos de Crecimiento/fisiología , Semaforinas/metabolismo , Trasplante de Células Madre/métodos , Sustancia Negra/crecimiento & desarrollo , Animales , Anticuerpos Neutralizantes/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Dopamina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Supervivencia de Injerto/efectos de los fármacos , Supervivencia de Injerto/fisiología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/farmacología , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuropilinas/agonistas , Neuropilinas/metabolismo , Enfermedad de Parkinson/terapia , Fenotipo , Ratas , Ratas Wistar , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Semaforinas/farmacología , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos
14.
Eur J Cell Biol ; 81(1): 1-8, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11893074

RESUMEN

Endothelial cells perform a large array of physiological functions that are influenced by their cellular heterogeneity in the different vascular beds. Vein endothelial cells isolated from the umbilical cords are commonly used to study vascular endothelium. Primary cultures of these cells, however, have low proliferative capacity and a limited life span. We have immortalized bovine umbilical vein endothelial cells (BUVEC) by transfection with an expression vector containing the human papillomavirus type 16 E6E7 oncogenes. Expression of E6E7 extended the life span of BUVEC from 40 to more than 1-20 cell replication cycles with no signs of senescence. Four immortalized clones were isolated and found to maintain endothelial cell properties, such as the uptake of acetylated low density lipoprotein, the expression of the von Willebrand protein, the binding of endothelial cell-specific lectins and proliferative responses to the specific endothelial cell mitogen, vascular endothelial growth factor. Moreover, clone BVE-E6E7-1, like its wild-type counterparts, expressed prolactin mRNA and decreased its proliferation in response to the anti-angiogenic 16-kDa fragment of prolactin. This clone showed little signs of genetic instability as revealed by centrosome and chromosome number analysis. Thus, immortalized E6E7 BUVEC cell lines retain endothelial cell characteristics and could facilitate studies to investigate the action of regulatory factors of vascular endothelium. Moreover, being the first non-human umbilical vein endothelial cell lines, their use should provide insights into the mechanisms governing species-related heterogeneity of endothelial cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Línea Celular Transformada/metabolismo , Sondas de ADN de HPV , Endotelio Vascular/metabolismo , Vectores Genéticos , Transfección/métodos , Venas Umbilicales/metabolismo , Animales , Proteínas Sanguíneas/farmacología , Bovinos , División Celular/genética , Línea Celular Transformada/citología , Tamaño de la Célula , Células Clonales/citología , Células Clonales/metabolismo , Sondas de ADN de HPV/genética , Relación Dosis-Respuesta a Droga , Endotelio Vascular/citología , Femenino , Vectores Genéticos/genética , Inmunohistoquímica , Modelos Biológicos , Papillomaviridae/genética , Fenotipo , Plásmidos/genética , Embarazo , Prolactina/genética , Prolactina/farmacología , ARN Mensajero/metabolismo , Venas Umbilicales/citología , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA