Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Dev Psychobiol ; 66(1): e22442, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38131243

RESUMEN

It has been shown that ethanol-induced interleukin-6 (IL-6) in adult male Sprague-Dawley rats was sensitized by environmental stimuli paired with ethanol and was accompanied by a conditioned increase in corticosterone (CORT). Adolescent males showed ethanol-induced IL-6 conditioning more readily than adults. The present studies examined whether female adolescents display IL-6 conditioning and whether adolescents of either sex show CORT conditioning. Male and female (N = 212, n = 6-10) adolescent (postnatal day 33-40) rats were given ethanol (2 g/kg intraperitoneal injection; the unconditioned stimulus), either paired with a lavender-scented novel context (the conditioned stimulus) or explicitly unpaired from context. Rats were tested in the context without ethanol and brains/blood were collected. Adolescent females did not show signs of neuroimmune (Experiment 1) or CORT conditioning (Experiments 2-4). Paired males showed enhanced CORT to the scented context relative to unpaired counterparts when the interoceptive cue of a saline injection was used on test day (Experiment 2). Experiment 5 used a delayed conditioning procedure and showed that male paired adolescents showed significantly higher CORT in response to context, showing that classically conditioned CORT response was precipitated by environmental cues alone. These findings indicate that adolescent males may be predisposed to form conditioned associations between alcohol and environmental cues, contributing to adolescent vulnerability to long-lasting ethanol effects.


Asunto(s)
Corticosterona , Etanol , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Corticosterona/farmacología , Etanol/farmacología , Señales (Psicología) , Interleucina-6
2.
Cells ; 12(15)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37566070

RESUMEN

Alcohol use during adolescence is a serious public health problem, with binge drinking and high-intensity drinking being particularly harmful to the developing adolescent brain. To investigate the adverse consequences of binge drinking and high-intensity adolescent drinking, adolescent rodents were intermittently exposed to ethanol through intragastric gavage, intraperitoneal injection, or vapor inhalation. These models revealed the long-lasting behavioral and neural consequences of adolescent intermittent ethanol (AIE) exposure. The present study was designed to characterize a different AIE model, namely, intermittent exposure to a single bottle of 10% ethanol as the only source of fluids on a 2 days on/2 days off (water days) schedule, and to determine whether this AIE exposure model would produce changes in hormonal and neuroimmune responsiveness to challenges of differing modalities. Assessments of ethanol intake as well as blood and brain ethanol concentrations (BECs and BrECs, respectively) in adult male and female rats (Experiment 1) revealed that BECs and BrECs peaked following access to ethanol for a 2 h period when assessed 1 h into the dark cycle. Experiment 2 revealed age differences in ethanol intake, BECs, and BrECs following a 2 h access to ethanol (1 h into the dark cycle), with adolescents ingesting more ethanol and reaching higher BECs as well as BrECs than adults. In Experiment 3, intermittent exposure to a single bottle of 10% ethanol for 10 cycles of 2 days on/2 days off was initiated either in early or late adolescence, followed by an acute systemic immune challenge with lipopolysaccharide (LPS) in adulthood. LPS increased corticosterone and progesterone levels regardless of sex and prior ethanol history, whereas an LPS-induced increase in cytokine gene expression in the hippocampus was evident only in ethanol-exposed males and females, with females who underwent early exposure to ethanol being more affected than their later-exposed counterparts. In Experiment 4, intermittent ethanol exposure in females was initiated either in adolescence or adulthood and lasted for 12 ethanol exposure cycles. Then, behavioral (freezing behavior), hormonal (corticosterone and progesterone levels), and neuroimmune (cytokine gene expression in the PVN, amygdala, and hippocampus) responses to novel environments (mild stressors) and shock (intense stressors) were assessed. More pronounced behavioral and hormonal changes, as well as changes in cytokine gene expression, were evident in the shock condition than following placement in the novel environment, with prior history of ethanol exposure not playing a substantial role. Interleukin (IL)-1ß gene expression was enhanced by shock in the PVN, whereas shock-induced increases in IL-6 gene expression were evident in the hippocampus. Together, these findings demonstrate that our intermittent adolescent exposure model enhances responsiveness to immune but not stress challenges, with females being more vulnerable to this AIE effect than males.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Etanol , Masculino , Ratas , Femenino , Animales , Etanol/farmacología , Lipopolisacáridos , Corticosterona , Progesterona , Citocinas
3.
Neuropharmacology ; 238: 109663, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429543

RESUMEN

Binge drinking during adolescence can have behavioral and neurobiological consequences. We have previously found that adolescent intermittent ethanol (AIE) exposure produces sex-specific social alterations indexed via decreases of social investigation and/or social preference in rats. The prelimbic cortex (PrL) regulates social interaction, and alterations within the PrL resulting from AIE may contribute to social alterations. The current study sought to determine whether AIE-induced PrL dysfunction underlies decreases in social interaction evident in adulthood. We first examined social interaction-induced neuronal activation of the PrL and several other regions of interest (ROIs) implicated in social interaction. Adolescent male and female cFos-LacZ rats were exposed to water (control) or ethanol (4 g/kg, 25% v/v) via intragastric gavage every other day between postnatal day (P) 25 and 45 (total 11 exposures). Since cFos-LacZ rats express ß-galactosidase (ß-gal) as a proxy for Fos, activated cells that express of ß-gal can be inactivated by Daun02. In most ROIs, expression of ß-gal was elevated in socially tested adult rats relative to home cage controls, regardless of sex. However, decreased social interaction-induced ß-gal expression in AIE-exposed rats relative to controls was evident only in the PrL of males. A separate cohort underwent PrL cannulation surgery in adulthood and was subjected to Daun02-induced inactivation. Inactivation of PrL ensembles previously activated by social interaction reduced social investigation in control males, with no changes evident in AIE-exposed males or females. These findings highlight the role of the PrL in male social investigation and suggest an AIE-associated dysfunction of the PrL that may contribute to reduced social investigation following adolescent ethanol exposure.


Asunto(s)
Etanol , Neuronas , Ratas , Masculino , Femenino , Animales , Etanol/farmacología
4.
bioRxiv ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993252

RESUMEN

Binge drinking during adolescence can have behavioral and neurobiological consequences. We have previously found that adolescent intermittent ethanol (AIE) exposure produces a sex-specific social impairment in rats. The prelimbic cortex (PrL) regulates social behavior, and alterations within the PrL resulting from AIE may contribute to social impairments. The current study sought to determine whether AIE-induced PrL dysfunction underlies social deficits in adulthood. We first examined social stimulus-induced neuronal activation of the PrL and several other regions of interest implicated in social behavior. Male and female cFos-LacZ rats were exposed to water (control) or ethanol (4 g/kg, 25% v/v) via intragastric gavage every other day between postnatal day (P) 25 and 45 (total 11 exposures). Since cFos-LacZ rats express ß-galactosidase (ß-gal) as a proxy for cFos, activated cells that express of ß-gal can be inactivated by Daun02. ß-gal expression in most ROIs was elevated in socially tested adult rats relative to home cage controls, regardless of sex. However, differences in social stimulus-induced ß-gal expression between controls and AIE-exposed rats was evident only in the PrL of males. A separate cohort underwent PrL cannulation surgery in adulthood and were subjected to Daun02-induced inactivation. Inactivation of PrL ensembles previously activated by a social stimulus led to a reduction of social behavior in control males, with no changes evident in AIE-exposed males or females. These findings highlight the role of the PrL in male social behavior and suggest an AIE-associated dysfunction of the PrL may contribute to social deficits following adolescent ethanol exposure.

5.
Brain Behav Immun ; 102: 209-223, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35245677

RESUMEN

Binge drinking that typically begins during adolescence can have long-lasting neurobehavioral consequences, including alterations in the central and peripheral immune systems. Central and peripheral inflammation disrupts blood-brain barrier (BBB) integrity and exacerbates pathology in diseases commonly associated with disturbed BBB function. Thus, the goal of the present studies was to determine long-lasting effects of adolescent intermittent ethanol (AIE) on BBB integrity. For AIE, male and female Sprague Dawley rats were repeatedly exposed to ethanol (4 g/kg, intragastrically) or water during adolescence between postnatal day (P) 30 and P50. In adulthood (∼P75), rats were challenged with fluorescein isothiocyanate (FITC)-tagged Dextran of varying molecular weights (4, 20, & 70 kDa) for assessment of BBB permeability using gross tissue fluorometry (Experiment 1). Experiment 2 extended these effects using immunofluorescence, adding an adult ethanol-exposed group to test for a specific developmental vulnerability. Finally, as a first test of hypothesized mechanism, Experiment 3 examined the effect of AIE on Vascular Endothelial Growth Factor A (VEGFA) and its co-localization with pericytes (identified through expression of platelet derived growth factor receptor beta (PDGFRß), a key regulatory cell embedded within the BBB. Male, but not female, rats with a history of AIE showed significantly increased dextran permeability in the nucleus accumbens (NAc), cingulate prefrontal cortex (cPFC), and amygdala (AMG). Similar increases in dextran were observed in the hippocampus (HPC) and ventral tegmental area (VTA) of male rats with a history of AIE or equivalent ethanol exposure during adulthood. No changes in BBB permeability were evident in females. When VEGFa expression was examined, male rats exposed to AIE were challenged with 3.5 g/kg ethanol (i.p.) or vehicle acutely in adulthood to assess long-lasting versus acute actions of ethanol. Adult rats with a history of AIE showed significantly fewer total cells expressing VEGFa in the AMG and dHPC following the acute ethanol challenge in adulthood. They also showed a significant reduction in the number of PDGFRß positive cells that also expressed VEGFa signal. The anatomical distribution of these effects corresponded with increased BBB permeability after AIE (i.e., differential effects in the PVN, AMG, and dHPC). These studies demonstrated sex-specific effects of AIE, with males, but not females, demonstrating long-term increases in BBB permeability that correlated with changes in VEGFa and PDGFRß protein, two factors known to influence BBB permeability.


Asunto(s)
Etanol , Factor A de Crecimiento Endotelial Vascular , Animales , Barrera Hematoencefálica , Dextranos , Etanol/farmacología , Femenino , Masculino , Permeabilidad , Ratas , Ratas Sprague-Dawley
6.
Eur J Neurosci ; 55(9-10): 2311-2325, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33458889

RESUMEN

Adolescence is a developmental period characterized by rapid behavioral and physiological changes, including enhanced vulnerability to stress. Recent studies using rodent models of adolescence have demonstrated age differences in neuroendocrine responses and blunted neuroimmune responding to pharmacological challenges. The present study was designed to test whether this neuroimmune insensitivity would generalize to a non-pharmacological stress challenge. Male and female adolescent (P29-33) and adult (P70-80) Sprague Dawley rats were exposed to intermittent footshock for one-, two-, or two-hours + recovery. Plasma corticosterone and progesterone levels as well as gene expression of several cytokines and c-Fos gene expression in the paraventricular nucleus of the hypothalamus (PVN), the medial amygdala (MeA), and the ventral hippocampus (vHPC) were analyzed. The results of the present study demonstrated differences in response to footshock, with these differences dependent on age, sex, and brain region of interest. Adult males and females demonstrated time-dependent increases in IL-1ß and IL-1R2 in the PVN, with these changes not evident in adolescent males and substantially blunted in adolescent females. TNFα expression was decreased in all regions of interest, with adults demonstrating more suppression relative to adolescents and age differences more apparent in males than in females. IL-6 expression was affected by footshock predominantly in the vHPC of adolescent and adult males and females, with females demonstrating prolonged elevation of IL-6 gene expression. In summary, central cytokine responses to acute stressor exposure are blunted in adolescent rats, with the most pronounced immaturity evident for the brain IL-1 signaling system.


Asunto(s)
Interleucina-6 , Estrés Psicológico , Animales , Corticosterona , Citocinas/metabolismo , Femenino , Sistema Hipotálamo-Hipofisario/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Núcleo Hipotalámico Paraventricular , Sistema Hipófiso-Suprarrenal/metabolismo , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/metabolismo
7.
Brain Res ; 1672: 113-121, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28764933

RESUMEN

Sex differences in the expression of social behavior are typically apparent in adolescent and adult rats. While the neurobiology underlying juvenile social play behavior has been well characterized, less is known about discrete brain regions involved in adult responsiveness to a same sex peer. Furthermore, whether adult males and females differ in their responsiveness to a social interaction in terms of neuronal activation indexed via immediate early gene (IEG) expression remains to be determined. Thus, the present study was designed to identify key sites relevant to the processing of sensory stimuli (generally) or social stimuli (specifically) after brief exposure to a same-sex social partner by assessing IEG expression. Four-month-old male and female Fisher (F) 344 rats (N=38; n=5-8/group) were either left undisturbed in their home cage as controls (HCC), exposed to a testing context alone for 30min (CXT), or were placed in the context for 20min and then allowed to socially interact (SI) with a sex-matched conspecific for 10min. Females demonstrated greater levels of social behavior, relative to males. Analysis of c-Fos induction revealed that females exhibited greater c-Fos expression in the prefrontal cortex, regardless of condition. In many brain regions, induction was similar in the CXT and SI groups. However, in the bed nucleus of the stria terminalis (BNST), females exhibited greater c-Fos induction in response to the social interaction relative to their male counterparts, indicating a sex difference in responsivity to social stimuli. Taken together, these data suggest that the BNST is a sexually dimorphic region in terms of activation in response to social stimuli.


Asunto(s)
Proteínas Proto-Oncogénicas c-fos/biosíntesis , Núcleos Septales/fisiología , Conducta Sexual Animal/fisiología , Animales , Femenino , Expresión Génica , Genes fos , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Endogámicas F344 , Núcleos Septales/metabolismo , Factores Sexuales
8.
J Pharmacol Exp Ther ; 351(3): 628-41, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25271258

RESUMEN

In the central nervous system, the ATP-gated Purinergic receptor P2X ligand-gated ion channel 7 (P2X7) is expressed in glial cells and modulates neurophysiology via release of gliotransmitters, including the proinflammatory cytokine interleukin (IL)-1ß. In this study, we characterized JNJ-42253432 [2-methyl-N-([1-(4-phenylpiperazin-1-yl)cyclohexyl]methyl)-1,2,3,4-tetrahydroisoquinoline-5-carboxamide] as a centrally permeable (brain-to-plasma ratio of 1), high-affinity P2X7 antagonist with desirable pharmacokinetic and pharmacodynamic properties for in vivo testing in rodents. JNJ-42253432 is a high-affinity antagonist for the rat (pKi 9.1 ± 0.07) and human (pKi 7.9 ± 0.08) P2X7 channel. The compound blocked the ATP-induced current and Bz-ATP [2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate tri(triethylammonium)]-induced release of IL-1ß in a concentration-dependent manner. When dosed in rats, JNJ-42253432 occupied the brain P2X7 channel with an ED50 of 0.3 mg/kg, corresponding to a mean plasma concentration of 42 ng/ml. The compound blocked the release of IL-1ß induced by Bz-ATP in freely moving rat brain. At higher doses/exposure, JNJ-42253432 also increased serotonin levels in the rat brain, which is due to antagonism of the serotonin transporter (SERT) resulting in an ED50 of 10 mg/kg for SERT occupancy. JNJ-42253432 reduced electroencephalography spectral power in the α-1 band in a dose-dependent manner; the compound also attenuated amphetamine-induced hyperactivity. JNJ-42253432 significantly increased both overall social interaction and social preference, an effect that was independent of stress induced by foot-shock. Surprisingly, there was no effect of the compound on either neuropathic pain or inflammatory pain behaviors. In summary, in this study, we characterize JNJ-42253432 as a novel brain-penetrant P2X7 antagonist with high affinity and selectivity for the P2X7 channel.


Asunto(s)
Fármacos del Sistema Nervioso Central/metabolismo , Fármacos del Sistema Nervioso Central/farmacología , Isoquinolinas/metabolismo , Isoquinolinas/farmacología , Piperazinas/metabolismo , Piperazinas/farmacología , Antagonistas del Receptor Purinérgico P2X/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/metabolismo , Animales , Animales Recién Nacidos , Fármacos del Sistema Nervioso Central/uso terapéutico , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/uso terapéutico , Masculino , Ratones , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Piperazinas/uso terapéutico , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Ratas , Ratas Sprague-Dawley
9.
Horm Behav ; 66(2): 209-19, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24816080

RESUMEN

It has previously been shown that pre-pubertal or adult gonadectomy (GX) increases ethanol intake in male rats. This study examined whether this sex-selective increase reflects a GX-induced maintenance in males of more adolescent-typical responsiveness to ethanol characterized by enhanced sensitivity to positive (e.g., socially facilitating) and a decreased sensitivity to adverse (e.g., socially inhibitory) effects of ethanol. Male and female Sprague-Dawley rats were pre-pubertally GX, sham (SH)-operated, or non-manipulated (NM) at postnatal day (P) 25. During the late adolescent transition into adulthood (P48 - baseline day), rats were given a saline injection, placed alone into a familiar test apparatus for 30min and then exposed for 10min to an unfamiliar partner of the same age and sex. On the following day (P49), similar testing occurred after administration of 0.5, 0.75, 1.0 or 1.25g/kg ethanol. At baseline, GX males and females displayed higher levels of social activity (especially adolescent-typical play and contact behavior) than SH and NM animals, with GX females displaying greater social activity than GX males. Neither males nor females demonstrated social facilitation at lower ethanol doses, regardless of hormonal status. Whereas the social inhibitory effects of higher doses of ethanol were similar across groups among females, SH males were less sensitive than both GX and NM males to ethanol-induced social inhibition. These results suggest that enhanced ethanol intake in GX males is not related to alterations in sensitivity to ethanol's social inhibitory effects. GX, however, results in retention of adolescent-typical social behaviors, with older GX adolescent rats resembling early adolescents in exhibiting elevated social activity-particularly play and contact behavior.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Orquiectomía/psicología , Ovariectomía/psicología , Conducta Social , Animales , Peso Corporal/fisiología , Depresores del Sistema Nervioso Central/metabolismo , Estradiol/sangre , Etanol/metabolismo , Femenino , Relaciones Interpersonales , Masculino , Actividad Motora/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Testosterona/sangre
10.
Behav Brain Res ; 260: 119-30, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24315831

RESUMEN

Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12-day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol-mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu-opioid activity that increases the pup's sensitivity to appetitive taste stimulation and the anxiolytic effects of 0.5 g/kg ethanol that decreases behaviors otherwise competing with independent ingestive activity.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Privación Materna , Dolor/metabolismo , Receptores Opioides mu/metabolismo , Aislamiento Social , Animales , Conducta de Ingestión de Líquido/efectos de los fármacos , Conducta de Ingestión de Líquido/fisiología , Agua Potable , Femenino , Aseo Animal/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Dolor/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/antagonistas & inhibidores , Sacarina , Somatostatina/análogos & derivados , Somatostatina/farmacología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
11.
Horm Behav ; 64(2): 343-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23998677

RESUMEN

This article is part of a Special Issue "Puberty and Adolescence". Adolescence is characterized by a variety of behavioral alterations, including elevations in novelty-seeking and experimentation with alcohol and other drugs of abuse. Some adolescent-typical neurobehavioral alterations may depend upon pubertal rises in gonadal hormones, whereas others may be unrelated to puberty. Using a variety of approaches, studies in laboratory animals have not revealed clear relationships between pubertal-related changes and adolescent- or adult-typical behaviors that are not strongly sexually dimorphic. Data reviewed suggest surprisingly modest influences of gonadal hormones on alcohol intake, alcohol preference and novelty-directed behaviors. Gonadectomy in males (but not females) increased ethanol intake in adulthood following surgery either pre-pubertally or in adulthood, with these increases in intake largely reversed by testosterone replacement in adulthood, supporting an activational role of androgens in moderating ethanol intake in males. In contrast, neither pre-pubertal nor adult gonadectomy influenced sensitivity to the social inhibitory or aversive effects of ethanol when indexed via conditioned taste aversions, although gonadectomy at either age altered the microstructure of social behavior of both males and females. Unexpectedly, the pre-pubertal surgical manipulation process itself was found to increase later ethanol intake, decrease sensitivity to ethanol's social inhibitory effects, attenuate novelty-directed behavior and lower social motivation, with gonadal hormones being necessary for these long-lasting effects of early surgical perturbations.


Asunto(s)
Conducta del Adolescente/fisiología , Hormonas Gonadales/fisiología , Trastornos Mentales/etiología , Pubertad/fisiología , Adolescente , Adulto , Castración/psicología , Femenino , Humanos , Masculino , Trastornos Mentales/cirugía , Pubertad/sangre
12.
Pharmacol Biochem Behav ; 103(4): 773-82, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23182856

RESUMEN

Numerous findings in adult and infant rats have shown that the endogenous opioid system is involved in control of ethanol consumption and its reinforcing effects. Opioid systems are also involved in reactivity to social isolation with several factors (age, duration, and type of isolation) affecting this modulation. The present study investigated the effects of a selective mu-opioid antagonist CTOP (0, 0.1, 0.5mg/kg), ethanol (0, 0.5 g/kg), and the interaction of the two drugs on the behavioral consequences of two types of social isolation given to preweanling rats: 1) short-term social isolation from littermates (STSI, duration 8 min) and 2) relatively long-term (5h) isolation (LTSI) from the dam and littermates. Voluntary intake of saccharin, locomotion, rearing activity, paw licking, and grooming were assessed during an 8-min. intake test. Thermal nociceptive reactivity was also measured before and after the testing session with normalized differences in pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). The results indicate that pharmacological blockade of mu-opioid receptors by CTOP substantially attenuated ethanol's anxiolytic effects on the developing rat's reactions to social isolation. Some of these stress-attenuating effects of CTOP were observed only in animals exposed to short-term isolation (STSI) but not in pups isolated for 5h (LTSI). Ethanol selectively increased saccharin intake during STSI in females and CTOP blocked this effect. Ethanol decreased the magnitude of analgesia associated with STSI but had no effect on pain reactivity during LTSI. CTOP by itself did not affect IIA or saccharin intake in sober animals. The findings of the present experiments indicate that the anxiolytic effects of 0.5 g/kg ethanol on pups exposed to STSI are modulated by endogenous opioid activity.


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Etanol/administración & dosificación , Actividad Motora/efectos de los fármacos , Antagonistas de Narcóticos/uso terapéutico , Receptores Opioides mu/antagonistas & inhibidores , Aislamiento Social , Factores de Edad , Consumo de Bebidas Alcohólicas/psicología , Animales , Animales Recién Nacidos , Relación Dosis-Respuesta a Droga , Etanol/antagonistas & inhibidores , Femenino , Masculino , Actividad Motora/fisiología , Antagonistas de Narcóticos/farmacología , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/fisiología , Aislamiento Social/psicología , Somatostatina/análogos & derivados , Somatostatina/farmacología , Somatostatina/uso terapéutico , Factores de Tiempo
13.
Dev Psychobiol ; 55(7): 684-97, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22851043

RESUMEN

The study assessed possible age differences in brain activation patterns to low dose ethanol (.5 g/kg intraperitoneally) and the influence of social context on this activation. Early adolescent or young adult male Sprague-Dawley rats were placed either alone or with an unfamiliar partner of the same age and sex following saline or ethanol administration. c-Fos protein immunoreactivity was used to index neuronal activation in 15 regions of interest. Ethanol had little effect on c-Fos activation. In adolescents, social context activated an "autonomic" network including the basolateral and central amygdala, bed nucleus of the stria terminalis, lateral hypothalamus, and lateral septum. In contrast, when adult rats were alone, activation was evident in a "reward" network that included the substantia nigra, nucleus accumbens, anterior cingulate and orbitofrontal cortices, lateral parabrachial nucleus, and locus coeruleus.


Asunto(s)
Cerebro/metabolismo , Red Nerviosa/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Conducta Social , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Cerebro/efectos de los fármacos , Cerebro/patología , Etanol/administración & dosificación , Etanol/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Recompensa
14.
Alcohol Clin Exp Res ; 33(6): 991-1000, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19302088

RESUMEN

BACKGROUND: Ethanol consumption is considerably elevated during adolescence. Attractiveness of alcohol for humans during the adolescent developmental period is based, in part, on its ability to induce social facilitation--a facilitation of social interactions not only evident in human adolescents but also in adolescent rats. Endogenous opioid systems are among the multiple neural systems implicated in the behavioral and reinforcing effects of ethanol and may play a substantial role in modulating stimulatory effects of low doses of ethanol on social behavior during adolescence. This possibility was explored in the present study through the use of an animal model of peer-directed social behavior. METHODS: Sprague-Dawley rats were challenged early in adolescence with saline or ethanol intraperitoneally (i.p.), placed into an individual holding cage for 30 minutes, and then tested in a familiar situation with a nonmanipulated partner of the same age and sex. In Experiment 1, each test subject was injected subcutaneously with one of the three doses of a nonselective opioid antagonist naloxone (0, 0.05, and 0.1 mg/kg), 5 minutes prior to the social interaction test and 25 minutes following challenge with saline or ethanol (0.5 g/kg), whereas in Experiment 2 animals were challenged with one of the six doses of ethanol (0, 0.25, 0.5, 0.75, 1.0, and 1.25 g/kg) prior to injection of either saline or naloxone (0.05 mg/kg). In Experiment 3, animals were pretreated i.p. with the selective mu-opioid antagonist CTOP (0, 0.01, 0.025, 0.05, and 0.1 mg/kg) 30 minutes prior to challenge with saline or ethanol (0.5 g/kg). RESULTS: Low doses of ethanol (0.5 and 0.75 g/kg) produced social facilitation, as indexed by significant increases in play fighting and social investigation. Both doses of naloxone and the three highest doses of CTOP blocked the stimulatory effects of ethanol on play fighting but not on social investigation. These effects were not associated with alterations in ethanol pharmacokinetic properties or with shifts in the biphasic ethanol dose-response curve. CONCLUSIONS: Ethanol-induced facilitation of social play behavior seen in adolescent animals is mediated in part through ethanol-induced release of endogenous ligands for the mu-opioid receptor or an ethanol-associated enhancement of sensitivity of these receptors for their endogenous ligands.


Asunto(s)
Envejecimiento/fisiología , Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Receptores Opioides mu/fisiología , Facilitación Social , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Depresores del Sistema Nervioso Central/sangre , Relación Dosis-Respuesta a Droga , Etanol/administración & dosificación , Etanol/sangre , Femenino , Inyecciones Intraperitoneales , Inyecciones Subcutáneas , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Modelos Animales , Naloxona/administración & dosificación , Naloxona/farmacología , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/efectos de los fármacos , Somatostatina/administración & dosificación , Somatostatina/análogos & derivados , Somatostatina/farmacología
15.
Behav Neurosci ; 120(2): 267-80, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16719691

RESUMEN

Toward understanding why infant rats ingest high levels of ethanol without initiation procedures, the authors tested effects of mu and kappa receptor antagonists on ethanol reinforcement in neonatal rats. After an intracisternal injection of CTOP (micro antagonist), nor-Binaltorphimine (kappa antagonist), or saline, newborn (3-hr-old) rats were given conditioning pairings of an odor with intraorally infused ethanol or a surrogate nipple with ethanol administered intraperitoneally (to minimize ethanol's gustatory attributes). In each case, these opioid antagonists reduced or eliminated ethanol's reinforcement effect. The same effects occurred with saccharin as the reinforcer in olfactory conditioning. The results imply that activation of mu and kappa receptors, apparently acting jointly, is necessary for reinforcement or that antagonists of this activity impair basic conditioning.


Asunto(s)
Depresores del Sistema Nervioso Central/administración & dosificación , Condicionamiento Clásico/efectos de los fármacos , Etanol/administración & dosificación , Narcóticos/metabolismo , Refuerzo en Psicología , Análisis de Varianza , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Peso Corporal/efectos de los fármacos , Alimentación con Biberón/métodos , Cesárea/métodos , Femenino , Masculino , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Somatostatina/análogos & derivados , Somatostatina/farmacología
16.
Physiol Behav ; 77(1): 107-14, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12213508

RESUMEN

About 1 million American adolescents start smoking every year. Adolescents may be unusually sensitive to certain consequences of nicotine, demonstrating, for instance, significantly higher rates of dependence than adults at the same level of nicotine use. To explore whether adolescents may be more sensitive to rewarding properties of nicotine than adults, the present study used an animal model to assess the rewarding effects of a low nicotine dose (0.6 mg/kg) in a conditioned place preference (CPP) paradigm. Locomotor activity during conditioning and testing was also evaluated. Nicotine was observed to induce place preference conditioning in adolescent Sprague-Dawley rats, whereas the training dose of 0.6 mg/kg failed to produce convincing place preference in their adult counterparts. Age differences were also apparent in terms of nicotine influences on motor activity, with adults being more sensitive to nicotine-suppressant effects and only adolescents showing an emergence of nicotine-stimulatory effects upon repeated exposures. An increased predisposition to stimulatory nicotine effects during adolescence may contribute to age-specific rewarding properties of the drug as revealed using the CPP paradigm in this experiment. Increased sensitivity to stimulatory and rewarding effects during adolescence could potentially contribute to the high rate of nicotine use and dependence among human adolescents.


Asunto(s)
Envejecimiento/psicología , Conducta de Elección/efectos de los fármacos , Condicionamiento Psicológico , Vivienda para Animales , Nicotina/farmacología , Animales , Actividad Motora/efectos de los fármacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA