Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Pathog ; 19(1): e1010482, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696453

RESUMEN

Post-Transcriptional Gene Silencing (PTGS) is a defense mechanism that targets invading nucleic acids of endogenous (transposons) or exogenous (pathogens, transgenes) origins. During plant infection by viruses, virus-derived primary siRNAs target viral RNAs, resulting in both destruction of single-stranded viral RNAs (execution step) and production of secondary siRNAs (amplification step), which maximizes the plant defense. As a counter-defense, viruses express proteins referred to as Viral Suppressor of RNA silencing (VSR). Some viruses express VSRs that totally inhibit PTGS, whereas other viruses express VSRs that have limited effect. Here we show that infection with the Turnip yellow mosaic virus (TYMV) is enhanced in Arabidopsis ago1, ago2 and dcl4 mutants, which are impaired in the execution of PTGS, but not in dcl2, rdr1 and rdr6 mutants, which are impaired in the amplification of PTGS. Consistently, we show that the TYMV VSR P69 localizes in siRNA-bodies, which are the site of production of secondary siRNAs, and limits PTGS amplification. Moreover, TYMV induces the production of the host enzyme RNASE THREE-LIKE 1 (RTL1) to further reduce siRNA accumulation. Infection with the Tobacco rattle virus (TRV), which also encodes a VSR limiting PTGS amplification, induces RTL1 as well to reduce siRNA accumulation and promote infection. Together, these results suggest that RTL1 could be considered as a host susceptibility gene that is induced by viruses as a strategy to further limit the plant PTGS defense when VSRs are insufficient.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Enfermedades de las Plantas , Proteínas Represoras , Tymovirus , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Tymovirus/genética , Tymovirus/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología
2.
New Phytol ; 229(6): 3408-3423, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33206370

RESUMEN

The root-knot nematode Meloidogyne incognita secretes specific effectors (MiEFF) and induces the redifferentiation of plant root cells into enlarged multinucleate feeding 'giant cells' essential for nematode development. Immunolocalizations revealed the presence of the MiEFF18 protein in the salivary glands of M. incognita juveniles. In planta, MiEFF18 localizes to the nuclei of giant cells demonstrating its secretion during plant-nematode interactions. A yeast two-hybrid approach identified the nuclear ribonucleoprotein SmD1 as a MiEFF18 partner in tomato and Arabidopsis. SmD1 is an essential component of the spliceosome, a complex involved in pre-mRNA splicing and alternative splicing. RNA-seq analyses of Arabidopsis roots ectopically expressing MiEFF18 or partially impaired in SmD1 function (smd1b mutant) revealed the contribution of the effector and its target to alternative splicing and proteome diversity. The comparison with Arabidopsis galls data showed that MiEFF18 modifies the expression of genes important for giant cell ontogenesis, indicating that MiEFF18 modulates SmD1 functions to facilitate giant cell formation. Finally, Arabidopsis smd1b mutants exhibited less susceptibility to M. incognita infection, and the giant cells formed on these mutants displayed developmental defects, suggesting that SmD1 plays an important role in the formation of giant cells and is required for successful nematode infection.


Asunto(s)
Células Gigantes , Proteínas del Helminto , Enfermedades de las Plantas/parasitología , Proteínas de Plantas , Empalmosomas , Tylenchoidea , Animales , Arabidopsis , Interacciones Huésped-Parásitos , Solanum lycopersicum , Proteínas de Plantas/genética , Raíces de Plantas
3.
Nucleic Acids Res ; 45(20): 11891-11907, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28981840

RESUMEN

RNase III enzymes cleave double stranded (ds)RNA. This is an essential step for regulating the processing of mRNA, rRNA, snoRNA and other small RNAs, including siRNA and miRNA. Arabidopsis thaliana encodes nine RNase III: four DICER-LIKE (DCL) and five RNASE THREE LIKE (RTL). To better understand the molecular functions of RNase III in plants we developed a biochemical assay using RTL1 as a model. We show that RTL1 does not degrade dsRNA randomly, but recognizes specific duplex sequences to direct accurate cleavage. Furthermore, we demonstrate that RNase III and dsRNA binding domains (dsRBD) are both required for dsRNA cleavage. Interestingly, the four DCL and the three RTL that carry dsRBD share a conserved cysteine (C230 in Arabidopsis RTL1) in their dsRBD. C230 is essential for RTL1 and DCL1 activities and is subjected to post-transcriptional modification. Indeed, under oxidizing conditions, glutathionylation of C230 inhibits RTL1 cleavage activity in a reversible manner involving glutaredoxins. We conclude that the redox state of the dsRBD ensures a fine-tune regulation of dsRNA processing by plant RNase III.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , ARN Bicatenario/metabolismo , ARN de Planta/metabolismo , Proteínas Represoras/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cisteína/genética , Glutatión/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Oxidación-Reducción , Dominios Proteicos , División del ARN , ARN Bicatenario/química , ARN Bicatenario/genética , ARN de Planta/química , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Motivos de Unión al ARN/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Homología de Secuencia de Ácido Nucleico
4.
PLoS One ; 6(12): e28729, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174881

RESUMEN

BACKGROUND: In Arabidopsis, AGO1 and AGO2 associate with small RNAs that exhibit a Uridine and an Adenosine at their 5' end, respectively. Because most plant miRNAs have a 5'U, AGO1 plays many essential roles in miRNA-mediated regulation of development and stress responses. In contrast, AGO2 has only been implicated in antibacterial defense in association with miR393*, which has a 5'A. AGO2 also participates in antiviral defense in association with viral siRNAs. PRINCIPAL FINDINGS: This study reveals that miR408, which has a 5'A, regulates its target Plantacyanin through either AGO1 or AGO2. Indeed, neither ago1 nor ago2 single mutations abolish miR408-mediated regulation of Plantacyanin. Only an ago1 ago2 double mutant appears compromised in miR408-mediated regulation of Plantacyanin, suggesting that AGO1 and AGO2 have redundant roles in this regulation. Moreover, the nature of the 5' nucleotide of miR408 does not appear essential for its regulatory role because both a wildtype 5'A-MIR408 and a mutant 5'U-MIR408 gene complement a mir408 mutant. CONCLUSIONS/SIGNIFICANCE: These results suggest that miR408 associates with both AGO1 and AGO2 based on criteria that differ from the 5' end rule, reminiscent of miR390-AGO7 and miR165/166-AGO10 associations, which are not based on the nature of the 5' nucleotide.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Argonautas/metabolismo , Regulación de la Expresión Génica de las Plantas , Metaloproteínas/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Alelos , Secuencia de Bases , Silenciador del Gen , Prueba de Complementación Genética , Metaloproteínas/metabolismo , MicroARNs/genética , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
PLoS One ; 6(2): e16724, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21304819

RESUMEN

BACKGROUND: Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3',(2'),5'-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. PRINCIPAL FINDINGS: A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3'-polyadenosine 5'-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the 3',(2'),5'-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi and is independent of the XRNs.


Asunto(s)
Arabidopsis , Exorribonucleasas/metabolismo , Mutación , Monoéster Fosfórico Hidrolasas/genética , Raíces de Plantas/enzimología , Alelos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Exorribonucleasas/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación/fisiología , Fenotipo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Inanición/genética , Inanición/patología
6.
Planta ; 225(2): 365-79, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16924537

RESUMEN

Silencing of a target locus by an unlinked silencing locus can result from transcription inhibition (transcriptional gene silencing; TGS) or mRNA degradation (post-transcriptional gene silencing; PTGS), owing to the production of double-stranded RNA (dsRNA) corresponding to promoter or transcribed sequences, respectively. The involvement of distinct cellular components in each process suggests that dsRNA-induced TGS and PTGS likely result from the diversification of an ancient common mechanism. However, a strict comparison of TGS and PTGS has been difficult to achieve because it generally relies on the analysis of distinct silencing loci. We describe a single transgene locus that triggers both TGS and PTGS, owing to the production of dsRNA corresponding to promoter and transcribed sequences of different target genes. We describe mutants and epigenetic variants derived from this locus and propose a model for the production of dsRNA. Also, we show that PTGS, but not TGS, is graft-transmissible, which together with the sensitivity of PTGS, but not TGS, to RNA viruses that replicate in the cytoplasm, suggest that the nuclear compartmentalization of TGS is responsible for cell-autonomy. In contrast, we contribute local and systemic trafficking of silencing signals and sensitivity to viruses to the cytoplasmic steps of PTGS and to amplification steps that require high levels of target mRNAs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Nicotiana/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Transgenes/genética , Epistasis Genética , Nitrito Reductasas/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , ARN Bicatenario/biosíntesis
7.
Plant Cell ; 17(2): 404-17, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15659630

RESUMEN

Genes introduced into higher plant genomes can become silent (gene silencing) and/or cause silencing of homologous genes at unlinked sites (homology-dependent gene silencing or HDG silencing). Mutations of the HOMOLOGY-DEPENDENT GENE SILENCING1 (HOG1) locus relieve transcriptional gene silencing and methylation-dependent HDG silencing and result in genome-wide demethylation. The hog1 mutant plants also grow slowly and have low fertility and reduced seed germination. Three independent mutants of HOG1 were each found to have point mutations at the 3' end of a gene coding for S-adenosyl-l-homocysteine (SAH) hydrolase, and hog1-1 plants show reduced SAH hydrolase activity. A transposon (hog1-4) and a T-DNA tag (hog1-5) in the HOG1 gene each behaved as zygotic embryo lethal mutants and could not be made homozygous. The results suggest that the homozygous hog1 point mutants are leaky and result in genome demethylation and poor growth and that homozygous insertion mutations result in zygotic lethality. Complementation of the hog1-1 point mutation with a T-DNA containing the gene coding for SAH hydrolase restored gene silencing, HDG silencing, DNA methylation, fast growth, and normal seed viability. The same T-DNA also complemented the zygotic embryo lethal phenotype of the hog1-4 tagged mutant. A model relating the HOG1 gene, DNA methylation, and methylation-dependent HDG silencing is presented.


Asunto(s)
Adenosilhomocisteinasa/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilación de ADN , Silenciador del Gen , Adenosilhomocisteinasa/metabolismo , Alelos , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , ADN Bacteriano/genética , Prueba de Complementación Genética , Homocigoto , Modelos Genéticos , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación Puntual , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA