Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
J Med Chem ; 67(8): 5999-6026, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38580317

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD+ biosynthesis via salvage of NAM formed from catabolism of NAD+ by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD+ in aging, neurodegeneration, and metabolic disorders is addressed by NAD+ supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD+ boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.


Asunto(s)
Inhibidores Enzimáticos , Nicotinamida Fosforribosiltransferasa , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Animales , Neoplasias/tratamiento farmacológico , NAD/metabolismo , Regulación Alostérica/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Citocinas/metabolismo
2.
ACS Med Chem Lett ; 15(2): 205-214, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38352833

RESUMEN

Evidence supports boosting nicotinamide adenine dinucleotide (NAD+) to counteract oxidative stress in aging and neurodegenerative disease. One approach is to enhance the activity of nicotinamide phosphoribosyltransferase (NAMPT). Novel NAMPT positive allosteric modulators (N-PAMs) were identified. A cocrystal structure confirmed N-PAM binding to the NAMPT rear channel. Early hit-to-lead efforts led to a 1.88-fold maximum increase in the level of NAD+ in human THP-1 cells. Select N-PAMs were assessed for mitigation of reactive oxygen species (ROS) in HT-22 neuronal cells subject to inflammatory stress using tumor necrosis factor alpha (TNFα). N-PAMs that increased NAD+ more effectively in THP-1 cells attenuated TNFα-induced ROS more effectively in HT-22 cells. The most efficacious N-PAM completely attenuated ROS elevation in glutamate-stressed HT-22 cells, a model of neuronal excitotoxicity. This work demonstrates for the first time that N-PAMs are capable of mitigating elevated ROS in neurons stressed with TNFα and glutamate and provides support for further N-PAM optimization for treatment of neurodegenerative diseases.

3.
J Med Chem ; 66(24): 16704-16727, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38096366

RESUMEN

Depletion of nicotinamide adenine dinucleotide (NAD+) is associated with aging and disease, spurring the study of dietary supplements to replenish NAD+. The catabolism of NAD+ to nicotinamide (NAM) requires the salvage of NAM to replenish cellular NAD+, which relies on the rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT). Pharmacological activation of NAMPT provides an alternative to dietary supplements. Screening for activators of NAMPT identified small molecule NAMPT positive allosteric modulators (N-PAMs). N-PAMs bind to the rear channel of NAMPT increasing enzyme activity and alleviating feedback inhibition by NAM and NAD+. Synthesis of over 70 N-PAMs provided an excellent correlation between rear channel binding affinity and potency for enzyme activation, confirming the mechanism of allosteric activation via binding to the rear channel. The mechanism accounts for higher binding affinity leading to loss of efficacy. Enzyme activation translated directly to elevation of NAD+ measured in cells. Optimization led to an orally bioavailable N-PAM.


Asunto(s)
NAD , Nicotinamida Fosforribosiltransferasa , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/metabolismo , NAD/metabolismo , Niacinamida/farmacología , Línea Celular Tumoral , Citocinas/metabolismo , Relación Estructura-Actividad
4.
Biochemistry ; 62(4): 923-933, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36746631

RESUMEN

In aging and disease, cellular nicotinamide adenine dinucleotide (NAD+) is depleted by catabolism to nicotinamide (NAM). NAD+ supplementation is being pursued to enhance human healthspan and lifespan. Activation of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD+ biosynthesis, has the potential to increase the salvage of NAM. Novel NAMPT-positive allosteric modulators (N-PAMs) were discovered in addition to the demonstration of NAMPT activation by biogenic phenols. The mechanism of activation was revealed through the synthesis of novel chemical probes, new NAMPT co-crystal structures, and enzyme kinetics. Binding to a rear channel in NAMPT regulates NAM binding and turnover, with biochemical observations being replicated by NAD+ measurements in human cells. The mechanism of action of N-PAMs identifies, for the first time, the role of the rear channel in the regulation of NAMPT turnover coupled to productive and nonproductive NAM binding. The tight regulation of cellular NAMPT via feedback inhibition by NAM, NAD+, and adenosine 5'-triphosphate (ATP) is differentially regulated by N-PAMs and other activators, indicating that different classes of pharmacological activators may be engineered to restore or enhance NAD+ levels in affected tissues.


Asunto(s)
NAD , Nicotinamida Fosforribosiltransferasa , Humanos , Citocinas/metabolismo , Longevidad , NAD/metabolismo , Niacinamida/farmacología , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/metabolismo , Sitio Alostérico
5.
Metallomics ; 13(7)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34165566

RESUMEN

Increasingly explored over the last decade, gold complexes have shown great promise in the field of cancer therapeutics. A major obstacle to their clinical progression has been their lack of in vivo stability, particularly for gold(III) complexes, which often undergo a facile reduction in the presence of biomolecules such as glutathione. Herein, we report a new class of promising anticancer gold(I)-gold(III) complexes with the general formula [XAuI(µ-2-C6F4PPh2)(κ2-2-C6F4PPh2)AuIIIX] [X = Cl (1), Br (2), NO3 (3)] which feature two gold atoms in different oxidation states (I and III) in a single molecule. Interestingly, gold(I)-gold(III) complexes (1-3) are stable against glutathione reduction under physiological-like conditions. In addition, complexes 1-3 exhibit significant cytotoxicity (276-fold greater than cisplatin) toward the tested cancer cells compared to the noncancerous cells. Moreover, the gold(I)-gold(III) complexes do not interact with DNA-like cisplatin but target cellular thioredoxin reductase, an enzyme linked to the development of cisplatin drug resistance. Complexes 1-3 also showed potential to inhibit cancer and endothelial cell migration, as well as tube formation during angiogenesis. In vivo studies in a murine HeLa xenograft model further showed the gold compounds may inhibit tumor growth on par clinically used cisplatin, supporting the significant potential this new compound class has for further development as cancer therapeutic.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Oro/química , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Antineoplásicos/química , Apoptosis , Ciclo Celular , Proliferación Celular , Cisplatino/farmacología , Complejos de Coordinación/química , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA