Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Toxics ; 10(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35878270

RESUMEN

In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.

2.
Toxics ; 10(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35736889

RESUMEN

Although being banned or restricted in many countries since the early 1990s, large quantities of asbestos are still used or present in building materials all over the world and its removal or handling requires specific systems that limit exposure to airborne fibers The exposure to asbestos causes chronic diseases such as asbestosis and lung cancer with an incubation period of 20 to 50 years. Among the operators most exposed to contamination are those who handle and analyze the materials in laboratories. For this reason, our work focused on an innovative method for removing a filter unit from a laboratory extraction hood, in order to improve the safety conditions for the operators and the surrounding environment. The hood has a particular construction technology with a mechanism that allows the spraying of a special encapsulating liquid on the ULPA filters below the work-bench, which is capable of forming a film and blocking the fibers on the surface of the same filter. The fibers are irreversibly bounded and can no longer be released into the surrounding environment. The monitoring of activity highlighted the absence of asbestos fibers in the air after installation of the filter and workers feel safer performing their activities. The introduction of an innovative filtering system enhanced the safety of work activities involving asbestos exposure, moreover, the time spent on the hood's maintenance and the risk perception of workers were improved.

3.
Environ Sci Technol ; 55(6): 3539-3548, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33616389

RESUMEN

There is very little information on the gas-particle partition and spatial and seasonal variations of current-use pesticides (CUPs) in the Great Lakes basin. The atmospheric concentrations of 36 CUPs were measured in 24 h gas and particle samples collected in 2017 at six sites in the Great Lakes basin. Thirteen individual CUPs were detected at least once in both gas- and particle-phase samples, with chlorothalonil, trifluralin, metolachlor, λ-cyhalothrin, cypermethrin, and chlorpyrifos detected in >50% samples. The gas-particle partitioning analysis suggests that gas-phase chemicals like trifluralin and chlorpyrifos were not influenced by either temperature or relative humidity while particle-phase chemicals like metolachlor were marginally and negatively correlated with relative humidity. Median total CUP concentrations were 339, 238, 84, 33, 60, and 6.0 pg/m3 at Chicago, Cleveland, Sturgeon Point, Point Petre, Sleeping Bear Dunes, and Eagle Harbor, respectively. The concentrations of total CUPs and most individual CUPs were generally higher at the urban sites of Chicago and Cleveland than at the rural/remote sites of Sturgeon Point, Point Petre, Sleeping Bear Dunes, and Eagle Harbor. Chlorothalonil, trifluralin, bifenthrin, and chlorpyrifos were the most abundant individual CUPs among fungicides, herbicides, pyrethroid insecticides, and other insecticides, respectively. The spatio-seasonal variation suggests that fungicides at Sturgeon Point and Sleeping Bear Dunes, with the highest fraction of agricultural land use, were associated with agricultural activities, while pyrethroid insecticides were generally driven by human activities.


Asunto(s)
Contaminantes Atmosféricos , Plaguicidas , Contaminantes Atmosféricos/análisis , Chicago , Monitoreo del Ambiente , Humanos , Lagos , Plaguicidas/análisis , Estaciones del Año
4.
Environ Sci Technol ; 54(19): 12013-12023, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32900185

RESUMEN

The habitats of wild primates are increasingly threatened by surrounding anthropogenic pressures, but little is known about primate exposure to frequently used chemicals. We applied a novel method to simultaneously measure 21 legacy pesticides (OCPs), 29 current use pesticides (CUPs), 47 halogenated flame retardants (HFRs), and 19 organophosphate flame retardants in feces from baboons in the U.S.A., howler monkeys in Costa Rica, and baboons, chimpanzees, red-tailed monkeys, and red colobus in Uganda. The most abundant chemicals were α-hexachlorocyclohexane (α-HCH), ß-hexachlorocyclohexane (ß-HCH), and hexachlorobenzene among OCPs across all sites, chlorpyrifos among CUPs in Costa Rica and Indiana, decabromodiphenylethane (DBDPE) in Costa Rica and Indiana and 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) in Uganda as HFRs, and tris(2-butoxyethyl) phosphate (TBOEP) as OPFRs across all sites. The detected chemical concentrations were generally higher in red-tailed monkeys and red colobus than in chimpanzees and baboons. Our methods can be used to examine the threat of chemical pollutants to wildlife, which is critical for endangered species where only noninvasive methods can be used.


Asunto(s)
Retardadores de Llama , Plaguicidas , Animales , Monitoreo del Ambiente , Heces/química , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Indiana , Organofosfatos , Plaguicidas/análisis , Primates , Uganda
5.
Environ Sci Technol ; 54(1): 325-334, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31820947

RESUMEN

Exposure to flame retardants (FRs) is associated with adverse effects on human health. Focusing on three FR groups, including polybrominated diphenyl ethers (PBDEs), organophosphate FRs (OPFRs), and novel brominated FRs (nBFRs), we determined the levels of these chemicals in indoor air in homes in rural Central Appalachia using passive air samplers and personal exposures in the residents of these homes using silicone wristbands. We also investigated the relationships between the FR levels in wristbands and the thyroid function. The median total concentrations of PBDEs, OPFRs, and nBFRs were 210, 25 000, and 69 pg/m3 in indoor air, and 49, 670, and 110 ng/g in wristbands, respectively. The most abundant chemicals in both air and wristbands were BDE-47 and -99 among PBDEs, tris[(2R)-1-chloro-2-propyl] phosphate among OPFRs, and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate and bis(2-ethylhexyl) tetrabromophthalate among nBFRs. In gender-specific regression models that were controlled for age and smoking, significant associations were observed between BDE-99, BDE-197, and 2-ethylhexyldiphenyl phosphate (EHDP) and free thyroxine (FT4), between BDE-100 and free triiodothyronine (FT3), and between anti-Dechlorane Plus (DP) and thyroid-stimulating hormone (TSH). In particular, most penta-BDE congeners were significantly or marginally significantly associated with FT4 and FT3 for both females and males. Our results suggest that wristbands can be used as suitable exposure monitors for evaluating human exposure to FRs.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Región de los Apalaches , Polvo , Monitoreo del Ambiente , Femenino , Éteres Difenilos Halogenados , Humanos , Masculino , Organofosfatos , Glándula Tiroides
6.
Environ Sci Technol ; 53(11): 6171-6181, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31081620

RESUMEN

Protected areas have developed alongside intensive changes in land use and human settlements in the neighboring landscape. Here, we investigated the occurrence of 21 organochlorine pesticides (OCPs), 14 current use pesticides (CUPs), 47 halogenated flame retardants (HFRs), and 19 organophosphate esters (OPEs) in air around Las Cruces (LC) and La Selva (LS) Biological Stations, Costa Rica, and Kibale National Park (KNP), Uganda using passive air samplers (PAS) with polyurethane foam (PUF) discs (PAS-PUF). Significantly higher concentrations of CUPs were observed around LS, while LC had a higher concentration of OCPs. Land use analysis indicated that LS had a higher fraction of agriculture than LC (33% vs 14%), suggesting the higher CUPs concentration at LS was related to pesticide intensive crops, while higher OCPs concentration at LC may be attributed to the area's long agricultural history characterized by small-scale subsistence farming or long-range transport. In Uganda, CUPs and OCPs were generally lower than in Costa Rica, but high concentrations of HFRs were observed inside KNP, possibly due to human activity at research camps near the protected forest. This is the first study that documented the occurrence of anthropogenic chemicals in the air at protected areas with tropical forests.


Asunto(s)
Contaminantes Atmosféricos , Retardadores de Llama , Plaguicidas , Costa Rica , Monitoreo del Ambiente , Uganda
7.
Chemosphere ; 206: 622-631, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29778940

RESUMEN

Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are restricted compounds that are ubiquitously detected in the environment, including indoor matrices such as air and residential dust. We report concentrations of PCBs and selected OCPs in indoor air and dust from homes in Canada (23 homes) and Czech Republic (20 homes). Indoor air concentrations of PCBs and OCPs were ∼10 times higher than that outdoors. PCB concentrations of ∼450 ng/m3 were similar in both countries, higher in homes built before the restrictions on PCBs, and had congener profiles consistent with PCB mixtures manufactured or used in each country. All OCP air concentrations were higher in the Czech Republic than in the Canadian samples, suggesting greater indoor use of, for example, DDT and HCH. These data emphasize the persistence of these organochlorine compounds indoors and their presence in homes even decades after new usage was prohibited. Indoor levels of these legacy POPs remain at similar concentrations to compounds of current concern, such as brominated flame retardants and perfluorinated alkyl substances, emphasizing that they deserve ongoing attention in view of knowledge of PCB and OCP toxicity.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Hidrocarburos Clorados/química , Bifenilos Policlorados/química , Canadá , República Checa , Hidrocarburos Clorados/análisis , Bifenilos Policlorados/análisis
8.
Environ Sci Technol ; 52(11): 6177-6186, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29762021

RESUMEN

The authors analyzed spatial and seasonal variations of current use pesticides (CUPs) levels in the atmospheric particulate phase in the Great Lakes basin. Twenty-four hour air samples were collected at six sites (two urban, two rural, and two remote) in 2015. The concentrations of 15 CUPs, including nine pyrethroid insecticides, four herbicides, one organophosphate insecticide, and one fungicide, were measured. The total CUPs concentrations were higher at the urban sites (0.38-1760 pg/m3) than at the rural and remote sites (0.07-530 pg/m3). The most abundant CUPs were pyrethroid insecticides at the urban sites. The levels of the other CUPs did not vary much among the six sites, except at the most remote site at Eagle Harbor, where the levels were significantly lower. Chlorothalonil was the most frequently detected CUP, which was detected in more than 76% of the samples. The atmospheric concentrations of total pyrethroid insecticides and total herbicides were correlated with local human population and developed land use. Significantly higher concentrations of most CUPs were observed in the warmer months than in the colder months at all sites. In addition to agricultural applications, which occur during the warmer months, the CUPs atmospheric concentrations may also be influenced by nonagricultural activities and the urban development.


Asunto(s)
Contaminantes Atmosféricos , Plaguicidas , Monitoreo del Ambiente , Great Lakes Region , Humanos , Estaciones del Año
9.
Acc Chem Res ; 48(7): 1853-61, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26050713

RESUMEN

Flame retardants are widely used industrial chemicals that are added to polymers, such as polyurethane foam, to prevent them from rapidly burning if exposed to a small flame or a smoldering cigarette. Flame retardants, especially brominated flame retardants, are added to many polymeric products at percent levels and are present in most upholstered furniture and mattresses. Most of these chemicals are so-called "additive" flame retardants and are not chemically bound to the polymer; thus, they migrate from the polymeric materials into the environment and into people. As a result, some of these chemicals have become widespread pollutants, which is a concern given their possible adverse health effects. Perhaps because of their environmental ubiquity, the most heavily used group of brominated flame retardants, the polybrominated diphenyl ethers (PBDEs), was withdrawn from production and use during the 2004-2013 period. This led to an increasing demand for other flame retardants, including other brominated aromatics and organophosphate esters. Although little is known about the use or production volumes of these newer flame retardants, it is evident that some of these chemicals are also becoming pervasive in the environment and in humans. In this Account, we describe our research on the occurrence of halogenated and organophosphate flame retardants in the environment, with a specific focus on the Great Lakes region. This Account starts with a short introduction to the first generation of brominated flame retardants, the polybrominated biphenyls, and then presents our measurements of their replacement, the PBDEs. We summarize our data on PBDE levels in babies, bald eagles, and in air. Once these compounds came off the market, we began to measure several of the newer flame retardants in air collected on the shores of the Great Lakes once every 12 days. These new measurements focus on a tetrabrominated benzoate, a tetrabrominated phthalate, a hexabrominated diphenoxyethane, several brominated benzenes, and a highly chlorinated norbornene compound called Dechlorane Plus. Most recently, we have begun measuring the atmospheric concentrations of several organophosphate esters, which are an increasing part of the flame retardant market. The interesting feature of this story is how one compound or set of compounds has followed another out of and into the marketplace even though none of them have been officially regulated. This replacement of one commercial product by another with similar functions shows that the chemical industry does respond to scientific environmental measurements and to the resulting bad publicity. This is a good thing. The problem is that often the replacement chemicals also become environmentally ubiquitous.

10.
Environ Sci Technol ; 44(2): 618-23, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20000599

RESUMEN

The gas-phase concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides have been measured at six sites around the Great Lakes every 12 days since the early 1990s as part of the Integrated Atmospheric Deposition Network. After converting the concentrations into partial pressures, data from all of the sites were combined and fitted using a multiple linear regression equation that included time (indicating the effect of a chemical's regulation), atmospheric temperature (indicating seasonality of use or release), the human population within a 25 km radius of the site (indicating the effect of urbanization) and wind speed and wind direction (indicating the source of the chemical). The atmospheric levels of lindane (gamma-HCH), DDTs, endosulfans, and chlordanes were largely related to seasonality, with much higher levels in the warm summer months. The levels of SigmaPCBs, SigmaPAHs, SigmaDDTs, and chlordanes were related to urbanization (this was a secondary factor for the latter two), a result that was unexpected for the two pesticides. The levels of only two compounds, alpha- and gamma-HCH, decreased rapidly as a function of time; conversely, most other compounds are declining at much slower rates. Wind speed and wind direction were statistically significant but unimportant variables for most of the compounds.


Asunto(s)
Contaminantes Atmosféricos/química , Hidrocarburos Clorados/química , Plaguicidas/química , Bifenilos Policlorados/química , Hidrocarburos Policíclicos Aromáticos/química , Great Lakes Region , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA