Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pediatr Pulmonol ; 58(8): 2298-2307, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37222404

RESUMEN

BACKGROUND: Hispanic people with cystic fibrosis (CF) have decreased life expectancy and earlier acquisition of Pseudomonas aeruginosa compared to non-Hispanic white individuals with CF. Racial and ethnic differences in the airway microbiome of CF may contribute to known health disparity, but have not been studied. The objective was to describe differences in the upper airway microbial community in Hispanic and non-Hispanic white children with CF. METHODS: This prospective, observational cohort study of 59 Hispanic and non-Hispanic white children with CF, ages 2-10 years old, was performed at Texas Children's Hospital (TCH) from February 2019 to January 2020. Oropharyngeal swabs were collected from the cohort during clinic visit. Swab samples underwent sequencing (16S V4 rRNA), diversity analysis, and taxonomic profiling. Key demographic and clinical data were collected from the electronic medical record and the CF Foundation Patient Registry (CFFPR). Statistical analysis compared sequencing, demographic, and clinical data. RESULTS: We found no significant difference in Shannon diversity or relative abundance of bacterial phyla between Hispanic and non-Hispanic children with CF. However, a low abundant taxa- "uncultured bacterium" belonging to the order Saccharimonadales was significantly higher in Hispanic children (mean relative abundance = 0.13%) compared to the non-Hispanic children (0.03%). Hispanic children had increased incidence of P. aeruginosa (p = 0.045) compared to non-Hispanic children. CONCLUSION: We did not find a significant difference in the airway microbial diversity between Hispanic and non-Hispanic white children with CF. However, we found a greater relative abundance of Saccharimonadales and higher incidence of P. aeruginosa in Hispanic children with CF.


Asunto(s)
Fibrosis Quística , Microbiota , Humanos , Niño , Preescolar , Fibrosis Quística/microbiología , Estudios Prospectivos , Microbiota/genética , Nariz , Tráquea , Bacterias/genética , Pseudomonas aeruginosa
2.
J Mol Diagn ; 24(2): 158-166, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775029

RESUMEN

Hospital-acquired infections pose significant costly global challenges to patient care. Rapid and sensitive methods to identify potential outbreaks are integral to infection control measures. Whole-genome sequencing (WGS)-based bacterial strain typing provides higher discriminatory power over standard nucleotide banding pattern-based methods such as repetitive sequence-based PCR (rep-PCR). However, integration of WGS into clinical epidemiology is limited by the lack of consensus in methodology and data analysis/interpretation. In this study, WGS was performed on genomic DNA extracted from 22 multidrug-resistant Pseudomonas aeruginosa (MDR-PA) isolates using next-generation sequencing. Resulting high-quality reads were analyzed for phylogenetic relatedness using a whole-genome multilocus sequence typing (wgMLST)-based software program and single-nucleotide variant phylogenomics (SNVPhyl). WGS-based results were compared with conventional MLST and archived rep-PCR results. Rep-PCR identified three independent clonal clusters of MDR-PA. Only one clonal cluster identified by rep-PCR, an endemic strain within the pediatric cystic fibrosis population at Texas Children's Hospital, was concordantly identified using wgMLST and SNVPhyl. Results were highly consistent between the three sequence-based analyses (conventional MLST, wgMLST, and SNVPhyl), and these results remained consistent with the addition of 74 MDR-PA genomes. These WGS-based methods provided greater resolution for strain discrimination than rep-PCR or standard MLST classification, and the ease of use of wgMLST software renders it clinically viable for analysis, interpretation, and reporting of WGS-based strain typing.


Asunto(s)
Pseudomonas aeruginosa , Secuencias Repetitivas de Ácidos Nucleicos , Técnicas de Tipificación Bacteriana/métodos , Niño , Humanos , Tipificación de Secuencias Multilocus/métodos , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Pseudomonas aeruginosa/genética , Secuenciación Completa del Genoma/métodos
3.
Cell Mol Gastroenterol Hepatol ; 3(2): 218-230, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28275689

RESUMEN

BACKGROUND & AIMS: Emerging data on the gut microbiome in autism spectrum disorder (ASD) suggest that altered host-microbe interactions may contribute to disease symptoms. Although gut microbial communities in children with ASD are reported to differ from individuals with neurotypical development, it is not known whether these bacteria induce pathogenic neuroimmune signals. METHODS: Because commensal clostridia interactions with the intestinal mucosa can regulate disease-associated cytokine and serotonergic pathways in animal models, we evaluated whether microbiome-neuroimmune profiles (from rectal biopsy specimens and blood) differed in ASD children with functional gastrointestinal disorders (ASD-FGID, n = 14) compared with neurotypical (NT) children with FGID (NT-FGID, n = 15) and without abdominal pain (NT, n = 6). Microbial 16S ribosomal DNA community signatures, cytokines, and serotonergic metabolites were quantified and correlated with gastrointestinal symptoms. RESULTS: A significant increase in several mucosa-associated Clostridiales was observed in ASD-FGID, whereas marked decreases in Dorea and Blautia, as well as Sutterella, were evident. Stratification by abdominal pain showed multiple organisms in ASD-FGID that correlated significantly with cytokines (interleukin [IL]6, IL1, IL17A, and interferon-γ). Group comparisons showed that IL6 and tryptophan release by mucosal biopsy specimens was highest in ASD children with abdominal pain, whereas serotonergic metabolites generally were increased in children with FGIDs. Furthermore, proinflammatory cytokines correlated significantly with several Clostridiales previously reported to associate with ASD, as did tryptophan and serotonin. CONCLUSIONS: Our findings identify distinctive mucosal microbial signatures in ASD children with FGID that correlate with cytokine and tryptophan homeostasis. Future studies are needed to establish whether these disease-associated Clostridiales species confer early pathogenic signals in children with ASD and FGID.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA