Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 14(1): 70, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167542

RESUMEN

Chemotherapy is a powerful means of cancer treatment but its efficacy is compromised by the emergence of multidrug resistance (MDR), mainly linked to the efflux transporter ABCB1/P-glycoprotein (P-gp). Based on the chemical structure of betulin, identified in our previous work as an effective modulator of the P-gp function, a series of analogs were designed, synthesized and evaluated as a source of novel inhibitors. Compounds 6g and 6i inhibited rhodamine 123 efflux in the P-gp overexpressed leukemia cells, K562/Dox, at concentrations of 0.19 µM and 0.39 µM, respectively, and increased the intracellular accumulation of doxorubicin at the submicromolar concentration of 0.098 µM. Compounds 6g and 6i were able to restore the sensitivity of K562/Dox to Dox at 0.024 µM and 0.19 µM, respectively. Structure-activity relationship analysis and molecular modeling revealed important information about the structural features conferring activity. All the active compounds fitted in a specific region involving mainly transmembrane helices (TMH) 4-6 from one homologous half and TMH 7 and 12 from the other, also showing close contacts with TMH 6 and 12. Compounds that bound preferentially to another region were inactive, regardless of their free energy of binding. It should be noted that compounds 6g and 6i were devoid of toxic effects against peripheral blood mononuclear normal cells and erythrocytes. The data obtained indicates that both compounds might be proposed as scaffolds for obtaining promising P-gp inhibitors for overcoming MDR.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Antineoplásicos , Humanos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Leucocitos Mononucleares/metabolismo , Resistencia a Antineoplásicos , Células K562 , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/metabolismo
2.
Front Pharmacol ; 13: 1007790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313304

RESUMEN

Background: Tumor angiogenesis is considered as a crucial pathologic feature of cancer with a key role in multidrug resistance (MDR). Adverse effects of the currently available drugs and the development of resistance to these remain as the hardest obstacles to defeat. Objetive: This work explores flora from Argentina as a source of new chemical entities with antiangiogenic activity. Methods: Tube formation assay using bovine aortic endothelial cells (BAECs) was the experiment of choice to assess antiangiogenic activity. The effect of the pure compound in cell invasiveness was investigated through the trans-well migration assay. The inhibitory effect of the pure compound on VEGFR-2 and PKC isozymes α and ß2 activation was studied by molecular and massive dynamic simulations. Cytotoxicity on peripheral blood mononuclear cells and erythrocyte cells was evaluated by means of MTT and hemolysis assay, respectively. In silico prediction of pharmacological properties (ADME) and evaluation of drug-likeness features were performed using the SwissADME online tool. Results: Among the plants screened, T. minuta, showed an outstanding effect with an IC50 of 33.6 ± 3.4 µg/ml. Bio-guided isolation yielded the terthiophene α-terthienylmethanol as its active metabolite. This compound inhibited VEGF-induced tube formation with an IC50 of 2.7 ± 0.4 µM and significantly impaired the invasiveness of bovine aortic endothelial cells (BAECs) as well as of the highly aggressive breast cancer cells, MDA-MB-231, when tested at 10 µM. Direct VEGFR-2 and PKC inhibition were both explored by means of massive molecular dynamics simulations. The results obtained validated the inhibitory effect on protein kinase C (PKC) isozymes α and ß2 as the main mechanism underlying its antiangiogenic activity. α-terthienylmethanol showed no evidence of toxicity against peripheral blood mononuclear and erythrocyte cells. Conclusion: These findings support this thiophene as a promising antiangiogenic phytochemical to fight against several types of cancer mainly those with MDR phenotype.

3.
Food Chem Toxicol ; 147: 111922, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33321149

RESUMEN

Overexpression of P-glycoprotein (P-gp), which is linked to multidrug resistance (MDR), is one of the underlying obstacles to the success of chemotherapy as it reduces the efficacy of anticancer drugs and the side effects of these increase as a result of any increased dose to achieve the therapeutic effect. To identify agents with P-gp inhibitory properties, ethanol extracts from 80 plants were screened for their ability to increase intracellular doxorubicin-associated fluorescence, and the extract of Ligaria cuneifolia was found to be the most effective. Its bioassay-guided isolation yielded the pentacyclic triterpene betulin as active agent. This efficiently inhibited P-gp mediated efflux, as demonstrated by the enhancement of the intracellular accumulation of doxorubicin and rhodamine 123 from 1.56 µM in the P-gp overexpressing MDR leukemia cell, Lucena 1. Betulin was also able to render Lucena 1 sensitive to Dox from 0.39 µM. The docking studies revealed that betulin tightly binds to a key region of the TMDs, with a binding mode overlapping one main site of doxorubicin and, more interestingly, emulating the same contacts as tariquidar, as revealed by the per-residue energetic analysis from molecular dynamics simulations. MTT assay using peripheral blood mononuclear cells and hemolysis assay showed that betulin is devoid of toxicity. These findings provide important evidence that betulin may be a safe and promising entity to be further investigated to develop agents able to overcome P-gp-mediated MDR, resulting in a more effective and less toxic chemotherapy.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Leucemia/tratamiento farmacológico , Loranthaceae/química , Extractos Vegetales/farmacología , Triterpenos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Antibióticos Antineoplásicos/metabolismo , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Doxorrubicina/metabolismo , Resistencia a Antineoplásicos , Colorantes Fluorescentes/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estructura Molecular , Extractos Vegetales/química , Rodamina 123/metabolismo , Triterpenos/química
4.
J Enzyme Inhib Med Chem ; 33(1): 171-183, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29210298

RESUMEN

The serine-threonine checkpoint kinase 1 (Chk1) plays a critical role in the cell cycle arrest in response to DNA damage. In the last decade, Chk1 inhibitors have emerged as a novel therapeutic strategy to potentiate the anti-tumour efficacy of cytotoxic chemotherapeutic agents. In the search for new Chk1 inhibitors, a congeneric series of 2-aryl-2 H-pyrazolo[4,3-c]quinolin-3-one (PQ) was evaluated by in-vitro and in-silico approaches for the first time. A total of 30 PQ structures were synthesised in good to excellent yields using conventional or microwave heating, highlighting that 14 of them are new chemical entities. Noteworthy, in this preliminary study two compounds 4e2 and 4h2 have shown a modest but significant reduction in the basal activity of the Chk1 kinase. Starting from these preliminary results, we have designed the second generation of analogous in this class and further studies are in progress in our laboratories.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Quinolinas/farmacología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/síntesis química , Pirazoles/química , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
5.
Front Pharmacol ; 8: 205, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28487651

RESUMEN

P-glycoprotein (P-gp) is a membrane protein associated with multidrug resistance (MDR) due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (±) pinoresinol successfully restored sensitivity to doxorubicin from 7 µM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC50 of 20.9 µM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 µM and thus higher activity than the lead compound. It also caused a significant increase in doxorubicin accumulation. Results were similar to those observed with verapamil. The results obtained positioned these compounds as potential candidates for effective agents to overcome P-gp-mediated MDR, leading to better outcomes for leukemia chemotherapy.

6.
J Mol Graph Model ; 46: 10-21, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24095875

RESUMEN

The human multidrug resistance (MDR) P-glycoprotein (P-gp) mediates the extrusion of chemotherapeutic drugs from cancer cells. Modulators are relevant pharmaceutical targets since they are intended to control or to inhibit its pumping activity. In the present work, a common binding site for Rhodamine 123 and modulators with different modulation activity was found by molecular docking over the crystal structure of the mouse P-gp. The modulators involved a family of compounds, including derivatives of propafenone (3-phenylpropiophenone nucleus) and XR9576 (tariquidar). Our results showed that the relative binding energies estimated by molecular docking were in good correlation with the experimental activities. Preliminary classical molecular dynamics results on selected P-gp/modulator complexes were also performed in order to understand the nature of the prevalent molecular interactions and the possible main molecular features that characterize a modulator. Besides, the results obtained with a human P-gp homology model from the mouse structure are also presented and analyzed. Our observations suggest that the hydrophobicity and molecular flexibility are the main features related to the inhibitory activity. The latter factor would increase the modulator ability to fit the aromatic rings inside the transmembrane domain.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Simulación del Acoplamiento Molecular , Secuencias de Aminoácidos , Animales , Sitios de Unión , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Quinolinas/química , Rodamina 123/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA