Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Alzheimers Res Ther ; 16(1): 122, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849944

RESUMEN

BACKGROUND: Evidence links lifestyle factors with Alzheimer's disease (AD). We report the first randomized, controlled clinical trial to determine if intensive lifestyle changes may beneficially affect the progression of mild cognitive impairment (MCI) or early dementia due to AD. METHODS: A 1:1 multicenter randomized controlled phase 2 trial, ages 45-90 with MCI or early dementia due to AD and a Montreal Cognitive Assessment (MoCA) score of 18 or higher. The primary outcome measures were changes in cognition and function tests: Clinical Global Impression of Change (CGIC), Alzheimer's Disease Assessment Scale (ADAS-Cog), Clinical Dementia Rating-Sum of Boxes (CDR-SB), and Clinical Dementia Rating Global (CDR-G) after 20 weeks of an intensive multidomain lifestyle intervention compared to a wait-list usual care control group. ADAS-Cog, CDR-SB, and CDR-Global scales were compared using a Mann-Whitney-Wilcoxon rank-sum test, and CGIC was compared using Fisher's exact test. Secondary outcomes included plasma Aß42/40 ratio, other biomarkers, and correlating lifestyle with the degree of change in these measures. RESULTS: Fifty-one AD patients enrolled, mean age 73.5. No significant differences in any measures at baseline. Only two patients withdrew. All patients had plasma Aß42/40 ratios <0.0672 at baseline, strongly supporting AD diagnosis. After 20 weeks, significant between-group differences in the CGIC (p= 0.001), CDR-SB (p= 0.032), and CDR Global (p= 0.037) tests and borderline significance in the ADAS-Cog test (p= 0.053). CGIC, CDR Global, and ADAS-Cog showed improvement in cognition and function and CDR-SB showed significantly less progression, compared to the control group which worsened in all four measures. Aß42/40 ratio increased in the intervention group and decreased in the control group (p = 0.003). There was a significant correlation between lifestyle and both cognitive function and the plasma Aß42/40 ratio. The microbiome improved only in the intervention group (p <0.0001). CONCLUSIONS: Comprehensive lifestyle changes may significantly improve cognition and function after 20 weeks in many patients with MCI or early dementia due to AD. TRIAL REGISTRATION: Approved by Western Institutional Review Board on 12/31/2017 (#20172897) and by Institutional Review Boards of all sites. This study was registered retrospectively with clinicaltrials.gov on October 8, 2020 (NCT04606420, ID: 20172897).


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Progresión de la Enfermedad , Estilo de Vida , Humanos , Masculino , Femenino , Anciano , Enfermedad de Alzheimer/psicología , Anciano de 80 o más Años , Persona de Mediana Edad , Demencia/psicología , Péptidos beta-Amiloides/sangre , Pruebas Neuropsicológicas , Resultado del Tratamiento
2.
Phytopathology ; : PHYTO06230194R, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38648112

RESUMEN

In 2014, Physostegia chlorotic mottle virus (PhCMoV) was discovered in Austria in Physostegia virginiana. Subsequent collaborative efforts established a link between the virus and severe fruit symptoms on important crops such as tomato, eggplant, and cucumber across nine European countries. Thereafter, specific knowledge gaps, which are crucial to assess the risks PhCMoV can pose for production and how to manage it, needed to be addressed. In this study, the transmission, prevalence, and disease severity of PhCMoV were examined. This investigation led to the identification of PhCMoV presence in a new country, Switzerland. Furthermore, our research indicates that the virus was already present in Europe 30 years ago. Bioassays demonstrated PhCMoV can result in up to 100% tomato yield losses depending on the phenological stage of the plant at the time of infection. PhCMoV was found to naturally infect 12 new host plant species across eight families, extending its host range to 21 plant species across 15 plant families. The study also identified a polyphagous leafhopper (genus Anaceratagallia) as a natural vector of PhCMoV. Overall, PhCMoV was widespread in small-scale diversified vegetable farms in Belgium where tomato is grown in soil under tunnels, occurring in approximately one-third of such farms. However, outbreaks were sporadic and were associated at least once with the cultivation in tomato tunnels of perennial plants that can serve as a reservoir host for the virus and its vector. To further explore this phenomenon and manage the virus, studying the ecology of the vector would be beneficial.

3.
medRxiv ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37292628

RESUMEN

Background: The ability to predict future risk of cancer development in non-malignant biopsies is poor. Cellular senescence has been associated with cancer as either a barrier mechanism restricting autonomous cell proliferation or a tumor-promoting microenvironmental mechanism that secretes pro-inflammatory paracrine factors. With most work done in non-human models and the heterogenous nature of senescence the precise role of senescent cells in the development of cancer in humans is not well understood. Further, more than one million non-malignant breast biopsies are taken every year that could be a major source of risk-stratification for women. Methods: We applied single cell deep learning senescence predictors based on nuclear morphology to histological images of 4,411 H&E-stained breast biopsies from healthy female donors. Senescence was predicted in the epithelial, stromal, and adipocyte compartments using predictor models trained on cells induced to senescence by ionizing radiation (IR), replicative exhaustion (RS), or antimycin A, Atv/R and doxorubicin (AAD) exposures. To benchmark our senescence-based prediction results we generated 5-year Gail scores, the current clinical gold standard for breast cancer risk prediction. Findings: We found significant differences in adipocyte-specific IR and AAD senescence prediction for the 86 out of 4,411 healthy women who developed breast cancer an average 4.8 years after study entry. Risk models demonstrated that individuals in the upper median of scores for the adipocyte IR model had a higher risk (OR=1.71 [1.10-2.68], p=0.019), while the adipocyte AAD model revealed a reduced risk (OR=0.57 [0.36-0.88], p=0.013). Individuals with both adipocyte risk factors had an OR of 3.32 ([1.68-7.03], p<0.001). Alone, 5-year Gail scores yielded an OR of 2.70 ([1.22-6.54], p=0.019). When combining Gail scores with our adipocyte AAD risk model, we found that individuals with both of these risk predictors had an OR of 4.70 ([2.29-10.90], p<0.001). Interpretation: Assessment of senescence with deep learning allows considerable prediction of future cancer risk from non-malignant breast biopsies, something that was previously impossible to do. Furthermore, our results suggest an important role for microscope image-based deep learning models in predicting future cancer development. Such models could be incorporated into current breast cancer risk assessment and screening protocols. Funding: This study was funded by the Novo Nordisk Foundation (#NNF17OC0027812), and by the National Institutes of Health (NIH) Common Fund SenNet program (U54AG075932).

4.
Proteomics ; 23(3-4): e2100371, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36479818

RESUMEN

Post-translational modifications (PTMs) dynamically regulate proteins and biological pathways, typically through the combined effects of multiple PTMs. Lysine residues are targeted for various PTMs, including malonylation and succinylation. However, PTMs offer specific challenges to mass spectrometry-based proteomics during data acquisition and processing. Thus, novel and innovative workflows using data-independent acquisition (DIA) ensure confident PTM identification, precise site localization, and accurate and robust label-free quantification. In this study, we present a powerful approach that combines antibody-based enrichment with comprehensive DIA acquisitions and spectral library-free data processing using directDIA (Spectronaut). Identical DIA data can be used to generate spectral libraries and comprehensively identify and quantify PTMs, reducing the amount of enriched sample and acquisition time needed, while offering a fully automated workflow. We analyzed brains from wild-type and Sirtuin 5 (SIRT5)-knock-out mice, and discovered and quantified 466 malonylated and 2211 succinylated peptides. SIRT5 regulation remodeled the acylomes by targeting 164 malonylated and 578 succinylated sites. Affected pathways included carbohydrate and lipid metabolisms, synaptic vesicle cycle, and neurodegenerative diseases. We found 48 common SIRT5-regulated malonylation and succinylation sites, suggesting potential PTM crosstalk. This innovative and efficient workflow offers deeper insights into the mouse brain lysine malonylome and succinylome.


Asunto(s)
Encéfalo , Lisina , Sirtuinas , Animales , Ratones , Lisina/metabolismo , Espectrometría de Masas , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Sirtuinas/metabolismo , Encéfalo/metabolismo
5.
Nat Aging ; 2(8): 742-755, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-37118134

RESUMEN

Cellular senescence is an important factor in aging and many age-related diseases, but understanding its role in health is challenging due to the lack of exclusive or universal markers. Using neural networks, we predict senescence from the nuclear morphology of human fibroblasts with up to 95% accuracy, and investigate murine astrocytes, murine neurons, and fibroblasts with premature aging in culture. After generalizing our approach, the predictor recognizes higher rates of senescence in p21-positive and ethynyl-2'-deoxyuridine (EdU)-negative nuclei in tissues and shows an increasing rate of senescent cells with age in H&E-stained murine liver tissue and human dermal biopsies. Evaluating medical records reveals that higher rates of senescent cells correspond to decreased rates of malignant neoplasms and increased rates of osteoporosis, osteoarthritis, hypertension and cerebral infarction. In sum, we show that morphological alterations of the nucleus can serve as a deep learning predictor of senescence that is applicable across tissues and species and is associated with health outcomes in humans.


Asunto(s)
Envejecimiento Prematuro , Aprendizaje Profundo , Humanos , Ratones , Animales , Senescencia Celular/fisiología , Envejecimiento , Biomarcadores
6.
Cells ; 12(1)2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36611902

RESUMEN

Doxorubicin (Doxo) is a widely used antineoplastic drug with limited clinical application due to its deleterious dose-related side effects. We investigated whether nicotinamide mononucleotide (NMN) could protect against Doxo-induced cardiotoxicity and physical dysfunction in vivo. To assess the short- and long-term toxicity, two Doxo regimens were tested, acute and chronic. In the acute study, C57BL6/J (B6) mice were injected intraperitoneally (i.p.) once with Doxo (20 mg/kg) and NMN (180 mg/kg/day, i.p.) was administered daily for five days before and after the Doxo injection. In the chronic study, B6 mice received a cumulative dose of 20 mg/kg Doxo administered in fractionated doses for five days. NMN (500 mg/kg/day) was supplied in the mice's drinking water beginning five days before the first injection of Doxo and continuing for 60 days after. We found that NMN significantly increased tissue levels of NAD+ and its metabolites and improved survival and bodyweight loss in both experimental models. In addition, NMN protected against Doxo-induced cardiotoxicity and loss of physical function in acute and chronic studies, respectively. In the heart, NMN prevented Doxo-induced transcriptomic changes related to mitochondrial function, apoptosis, oxidative stress, inflammation and p53, and promyelocytic leukemia nuclear body pathways. Overall, our results suggest that NMN could prevent Doxo-induced toxicity in heart and skeletal muscle.


Asunto(s)
Cardiotoxicidad , Mononucleótido de Nicotinamida , Ratones , Animales , Cardiotoxicidad/prevención & control , Mononucleótido de Nicotinamida/farmacología , Doxorrubicina/toxicidad , Corazón , Apoptosis
7.
Gastroenterology ; 161(5): 1584-1600, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34245764

RESUMEN

BACKGROUND & AIMS: SIRT5 plays pleiotropic roles via post-translational modifications, serving as a tumor suppressor, or an oncogene, in different tumors. However, the role SIRT5 plays in the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) remains unknown. METHODS: Published datasets and tissue arrays with SIRT5 staining were used to investigate the clinical relevance of SIRT5 in PDAC. Furthermore, to define the role of SIRT5 in the carcinogenesis of PDAC, we generated autochthonous mouse models with conditional Sirt5 knockout. Moreover, to examine the mechanistic role of SIRT5 in PDAC carcinogenesis, SIRT5 was knocked down in PDAC cell lines and organoids, followed by metabolomics and proteomics studies. A novel SIRT5 activator was used for therapeutic studies in organoids and patient-derived xenografts. RESULTS: SIRT5 expression negatively regulated tumor cell proliferation and correlated with a favorable prognosis in patients with PDAC. Genetic ablation of Sirt5 in PDAC mouse models promoted acinar-to-ductal metaplasia, precursor lesions, and pancreatic tumorigenesis, resulting in poor survival. Mechanistically, SIRT5 loss enhanced glutamine and glutathione metabolism via acetylation-mediated activation of GOT1. A selective SIRT5 activator, MC3138, phenocopied the effects of SIRT5 overexpression and exhibited antitumor effects on human PDAC cells. MC3138 also diminished nucleotide pools, sensitizing human PDAC cell lines, organoids, and patient-derived xenografts to gemcitabine. CONCLUSIONS: Collectively, we identify SIRT5 as a key tumor suppressor in PDAC, whose loss promotes tumorigenesis through increased noncanonic use of glutamine via GOT1, and that SIRT5 activation is a novel therapeutic strategy to target PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/enzimología , Metabolismo Energético , Neoplasias Pancreáticas/enzimología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sirtuinas/deficiencia , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Aspartato Aminotransferasa Citoplasmática/genética , Aspartato Aminotransferasa Citoplasmática/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Progresión de la Enfermedad , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Activadores de Enzimas/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Sirtuinas/genética , Carga Tumoral , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
8.
Nat Rev Mol Cell Biol ; 22(2): 119-141, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33353981

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions, making it central to energy metabolism. NAD+ is also an essential cofactor for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ can directly and indirectly influence many key cellular functions, including metabolic pathways, DNA repair, chromatin remodelling, cellular senescence and immune cell function. These cellular processes and functions are critical for maintaining tissue and metabolic homeostasis and for healthy ageing. Remarkably, ageing is accompanied by a gradual decline in tissue and cellular NAD+ levels in multiple model organisms, including rodents and humans. This decline in NAD+ levels is linked causally to numerous ageing-associated diseases, including cognitive decline, cancer, metabolic disease, sarcopenia and frailty. Many of these ageing-associated diseases can be slowed down and even reversed by restoring NAD+ levels. Therefore, targeting NAD+ metabolism has emerged as a potential therapeutic approach to ameliorate ageing-related disease, and extend the human healthspan and lifespan. However, much remains to be learnt about how NAD+ influences human health and ageing biology. This includes a deeper understanding of the molecular mechanisms that regulate NAD+ levels, how to effectively restore NAD+ levels during ageing, whether doing so is safe and whether NAD+ repletion will have beneficial effects in ageing humans.


Asunto(s)
Envejecimiento , Fenómenos Fisiológicos Celulares , Redes y Vías Metabólicas , Mitocondrias/metabolismo , NAD/metabolismo , Animales , Metabolismo Energético , Humanos
9.
Circ Heart Fail ; 14(1): e007684, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356362

RESUMEN

BACKGROUND: Accumulating evidence suggests that the failing heart reprograms fuel metabolism toward increased utilization of ketone bodies and that increasing cardiac ketone delivery ameliorates cardiac dysfunction. As an initial step toward development of ketone therapies, we investigated the effect of chronic oral ketone ester (KE) supplementation as a prevention or treatment strategy in rodent heart failure models. METHODS: Two independent rodent heart failure models were used for the studies: transverse aortic constriction/myocardial infarction (MI) in mice and post-MI remodeling in rats. Seventy-five mice underwent a prevention treatment strategy with a KE comprised of hexanoyl-hexyl-3-hydroxybutyrate KE (KE-1) diet, and 77 rats were treated in either a prevention or treatment regimen using a commercially available ß-hydroxybutyrate-(R)-1,3-butanediol monoester (DeltaG; KE-2) diet. RESULTS: The KE-1 diet in mice elevated ß-hydroxybutyrate levels during nocturnal feeding, whereas the KE-2 diet in rats induced ketonemia throughout a 24-hour period. The KE-1 diet preventive strategy attenuated development of left ventricular dysfunction and remodeling post-transverse aortic constriction/MI (left ventricular ejection fraction±SD, 36±8 in vehicle versus 45±11 in KE-1; P=0.016). The KE-2 diet therapeutic approach also attenuated left ventricular dysfunction and remodeling post-MI (left ventricular ejection fraction, 41±11 in MI-vehicle versus 61±7 in MI-KE-2; P<0.001). In addition, ventricular weight, cardiomyocyte cross-sectional area, and the expression of ANP (atrial natriuretic peptide) were significantly attenuated in the KE-2-treated MI group. However, treatment with KE-2 did not influence cardiac fibrosis post-MI. The myocardial expression of the ketone transporter and 2 ketolytic enzymes was significantly increased in rats fed KE-2 diet along with normalization of myocardial ATP levels to sham values. CONCLUSIONS: Chronic oral supplementation with KE was effective in both prevention and treatment of heart failure in 2 preclinical animal models. In addition, our results indicate that treatment with KE reprogrammed the expression of genes involved in ketone body utilization and normalized myocardial ATP production following MI, consistent with provision of an auxiliary fuel. These findings provide rationale for the assessment of KEs as a treatment for patients with heart failure.


Asunto(s)
Suplementos Dietéticos , Insuficiencia Cardíaca/fisiopatología , Hidroxibutiratos , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Volumen Sistólico/fisiología , Disfunción Ventricular Izquierda/fisiopatología , Adenosina Trifosfato/metabolismo , Animales , Aorta/cirugía , Factor Natriurético Atrial/metabolismo , Constricción Patológica , Fibrosis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/patología , Tamaño de los Órganos , Ratas , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Función Ventricular Izquierda
10.
Nat Metab ; 2(11): 1265-1283, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33199924

RESUMEN

Declining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation. These M1-like macrophages express high levels of the NAD-consuming enzyme CD38 and have enhanced CD38-dependent NADase activity, thereby reducing tissue NAD levels. We also find that senescent cells progressively accumulate in visceral white adipose tissue and liver during ageing and that inflammatory cytokines secreted by senescent cells (the senescence-associated secretory phenotype, SASP) induce macrophages to proliferate and express CD38. These results uncover a new causal link among resident tissue macrophages, cellular senescence and tissue NAD decline during ageing and offer novel therapeutic opportunities to maintain NAD levels during ageing.


Asunto(s)
ADP-Ribosil Ciclasa 1/genética , Envejecimiento/metabolismo , Senescencia Celular , Activación de Macrófagos , Glicoproteínas de Membrana/genética , NAD/metabolismo , ADP-Ribosil Ciclasa/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Antígenos CD/metabolismo , Citocinas/metabolismo , Femenino , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Glucólisis/genética , Humanos , Hígado/metabolismo , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , NAD+ Nucleosidasa/metabolismo
11.
Cell Rep ; 32(5): 107991, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32755584

RESUMEN

A comprehensive understanding of the phenotype of persistent HIV-infected cells, transcriptionally active and/or transcriptionally inactive, is imperative for developing a cure. The relevance of cell-surface glycosylation to HIV persistence has never been explored. We characterize the relationship between cell-surface glycomic signatures and persistent HIV transcription in vivo. We find that the cell surface of CD4+ T cells actively transcribing HIV, despite suppressive therapy, harbors high levels of fucosylated carbohydrate ligands, including the cell extravasation mediator Sialyl-LewisX (SLeX), compared with HIV-infected transcriptionally inactive cells. These high levels of SLeX are induced by HIV transcription in vitro and are maintained after therapy in vivo. Cells with high-SLeX are enriched with markers associated with HIV susceptibility, signaling pathways that drive HIV transcription, and pathways involved in leukocyte extravasation. We describe a glycomic feature of HIV-infected transcriptionally active cells that not only differentiates them from their transcriptionally inactive counterparts but also may affect their trafficking abilities.


Asunto(s)
Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/metabolismo , VIH/genética , Antígeno Sialil Lewis X/metabolismo , Transcripción Genética , Linfocitos T CD4-Positivos/inmunología , Carbohidratos/química , Línea Celular , Membrana Celular/metabolismo , Fucosa/metabolismo , Glicómica , Glicosilación , Infecciones por VIH/inmunología , Humanos , Memoria Inmunológica , Ligandos , Activación de Linfocitos/inmunología
12.
Nat Microbiol ; 5(9): 1144-1157, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32541947

RESUMEN

Quiescence is a hallmark of CD4+ T cells latently infected with human immunodeficiency virus 1 (HIV-1). While reversing this quiescence is an effective approach to reactivate latent HIV from T cells in culture, it can cause deleterious cytokine dysregulation in patients. As a key regulator of T-cell quiescence, FOXO1 promotes latency and suppresses productive HIV infection. We report that, in resting T cells, FOXO1 inhibition impaired autophagy and induced endoplasmic reticulum (ER) stress, thereby activating two associated transcription factors: activating transcription factor 4 (ATF4) and nuclear factor of activated T cells (NFAT). Both factors associate with HIV chromatin and are necessary for HIV reactivation. Indeed, inhibition of protein kinase R-like ER kinase, an ER stress sensor that can mediate the induction of ATF4, and calcineurin, a calcium-dependent regulator of NFAT, synergistically suppressed HIV reactivation induced by FOXO1 inhibition. Thus, our studies uncover a link of FOXO1, ER stress and HIV infection that could be therapeutically exploited to selectively reverse T-cell quiescence and reduce the size of the latent viral reservoir.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacología , VIH-1/efectos de los fármacos , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Factor de Transcripción Activador 4/metabolismo , Linfocitos T CD4-Positivos/virología , Proteína Forkhead Box O1/genética , Técnicas de Silenciamiento del Gen , Infecciones por VIH/virología , Humanos , Células K562
13.
Phytopathology ; 110(1): 68-79, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31631806

RESUMEN

High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.


Asunto(s)
Genoma Viral , Virus del Mosaico , Virus de Plantas , Animales , Grano Comestible/virología , Genoma Viral/genética , Hemípteros/virología , Virus del Mosaico/genética , Noruega , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Suecia
14.
Nat Med ; 25(12): 1822-1832, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31806905

RESUMEN

Although intermittent increases in inflammation are critical for survival during physical injury and infection, recent research has revealed that certain social, environmental and lifestyle factors can promote systemic chronic inflammation (SCI) that can, in turn, lead to several diseases that collectively represent the leading causes of disability and mortality worldwide, such as cardiovascular disease, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. In the present Perspective we describe the multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress. Furthermore, we suggest potential strategies for advancing the early diagnosis, prevention and treatment of SCI.


Asunto(s)
Enfermedad Crónica/epidemiología , Inflamación/fisiopatología , Longevidad/genética , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/fisiopatología , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/fisiopatología , Diabetes Mellitus/etiología , Diabetes Mellitus/fisiopatología , Humanos , Inflamación/complicaciones , Inflamación/epidemiología , Estilo de Vida , Longevidad/fisiología , Neoplasias/etiología , Neoplasias/fisiopatología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/fisiopatología , Factores de Riesgo
15.
Methods Mol Biol ; 1983: 3-16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31087289

RESUMEN

The dynamic nature of protein posttranslational modification (PTM) allows cells to rapidly respond to changes in their environment, such as nutrition, stress, or signaling. Lysine residues are targets for several types of modifications, including methylation, ubiquitination, and various acylation groups, especially acetylation. Currently, one of the best methods for identification and quantification of protein acetylation is immunoaffinity enrichment in combination with high-resolution mass spectrometry. As we are using a relatively novel and comprehensive mass spectrometric approach, data-independent acquisition (DIA), this protocol provides high-throughput, accurate, and reproducible label-free PTM quantification. Here we describe detailed protocols to process relatively small amounts of mouse liver tissue that integrate isolation of proteins, proteolytic digestion into peptides, immunoaffinity enrichment of acetylated peptides, identification of acetylation sites, and comprehensive quantification of relative abundance changes for thousands of identified lysine acetylation sites.


Asunto(s)
Cromatografía Liquida , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem , Acetilación , Animales , Hígado/metabolismo , Ratones , Péptidos , Proteolisis , Proteoma , Proteómica , Flujo de Trabajo
16.
Cell Metab ; 28(6): 866-880.e15, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146486

RESUMEN

The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid synthase knockdown (FASNKD) in ECs impedes vessel sprouting by reducing proliferation. Endothelial loss of FASN impaired angiogenesis in vivo, while FASN blockade reduced pathological ocular neovascularization, at >10-fold lower doses than used for anti-cancer treatment. Impaired angiogenesis was not due to energy stress, redox imbalance, or palmitate depletion. Rather, FASNKD elevated malonyl-CoA levels, causing malonylation (a post-translational modification) of mTOR at lysine 1218 (K1218). mTOR K-1218 malonylation impaired mTOR complex 1 (mTORC1) kinase activity, thereby reducing phosphorylation of downstream targets (p70S6K/4EBP1). Silencing acetyl-CoA carboxylase 1 (an enzyme producing malonyl-CoA) normalized malonyl-CoA levels and reactivated mTOR in FASNKD ECs. Mutagenesis unveiled the importance of mTOR K1218 malonylation for angiogenesis. This study unveils a novel role of FASN in metabolite signaling that contributes to explaining the anti-angiogenic effect of FASN blockade.


Asunto(s)
Acido Graso Sintasa Tipo I/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Malonil Coenzima A/metabolismo , Neovascularización Retiniana/patología , Serina-Treonina Quinasas TOR/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Acido Graso Sintasa Tipo I/genética , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Orlistat/uso terapéutico , Procesamiento Proteico-Postraduccional , Neovascularización Retiniana/tratamiento farmacológico
17.
Immunity ; 48(6): 1183-1194.e5, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29802019

RESUMEN

HIV-1 infection of CD4+ T cells leads to cytopathic effects and cell demise, which is counter to the observation that certain HIV-1-infected cells possess a remarkable long-term stability and can persist lifelong in infected individuals treated with suppressive antiretroviral therapy (ART). Using quantitative mass spectrometry-based proteomics, we showed that HIV-1 infection activated cellular survival programs that were governed by BIRC5, a molecular inhibitor of cell apoptosis that is frequently overexpressed in malignant cells. BIRC5 and its upstream regulator OX40 were upregulated in productively and latently infected CD4+ T cells and were functionally involved in maintaining their viability. Moreover, OX40-expressing CD4+ T cells from ART-treated patients were enriched for clonally expanded HIV-1 sequences, and pharmacological inhibition of BIRC5 resulted in a selective decrease of HIV-1-infected cells in vitro. Together, these findings suggest that BIRC5 supports long-term survival of HIV-1-infected cells and may lead to clinical strategies to reduce persisting viral reservoirs.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Survivin/metabolismo , Latencia del Virus/fisiología , Adulto , Anciano , Apoptosis , Supervivencia Celular/fisiología , Femenino , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1 , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Elife ; 72018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29664401

RESUMEN

We report that Histone Deacetylase 7 (HDAC7) controls the thymic effector programming of Natural Killer T (NKT) cells, and that interference with this function contributes to tissue-specific autoimmunity. Gain of HDAC7 function in thymocytes blocks both negative selection and NKT development, and diverts Vα14/Jα18 TCR transgenic thymocytes into a Tconv-like lineage. Conversely, HDAC7 deletion promotes thymocyte apoptosis and causes expansion of innate-effector cells. Investigating the mechanisms involved, we found that HDAC7 binds PLZF and modulates PLZF-dependent transcription. Moreover, HDAC7 and many of its transcriptional targets are human risk loci for IBD and PSC, autoimmune diseases that strikingly resemble the disease we observe in HDAC7 gain-of-function in mice. Importantly, reconstitution of iNKT cells in these mice mitigated their disease, suggesting that the combined defects in negative selection and iNKT cells due to altered HDAC7 function can cause tissue-restricted autoimmunity, a finding that may explain the association between HDAC7 and hepatobiliary autoimmunity.


Asunto(s)
Autoinmunidad , Histona Desacetilasas/metabolismo , Células T Asesinas Naturales/inmunología , Animales , Animales Modificados Genéticamente , Eliminación de Gen , Expresión Génica , Humanos , Ratones , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo
19.
J Exp Med ; 215(1): 51-62, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29191913

RESUMEN

The expansion of CD8+CD28- T cells, a population of terminally differentiated memory T cells, is one of the most consistent immunological changes in humans during aging. CD8+CD28- T cells are highly cytotoxic, and their frequency is linked to many age-related diseases. As they do not accumulate in mice, many of the molecular mechanisms regulating their fate and function remain unclear. In this paper, we find that human CD8+CD28- T cells, under resting conditions, have an enhanced capacity to use glycolysis, a function linked to decreased expression of the NAD+-dependent protein deacetylase SIRT1. Global gene expression profiling identified the transcription factor FoxO1 as a SIRT1 target involved in transcriptional reprogramming of CD8+CD28- T cells. FoxO1 is proteasomally degraded in SIRT1-deficient CD8+CD28- T cells, and inhibiting its activity in resting CD8+CD28+ T cells enhanced glycolytic capacity and granzyme B production as in CD8+CD28- T cells. These data identify the evolutionarily conserved SIRT1-FoxO1 axis as a regulator of resting CD8+ memory T cell metabolism and activity in humans.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Metabolismo Energético/genética , Memoria Inmunológica , Sirtuina 1/deficiencia , Biomarcadores , Antígenos CD28/metabolismo , Citotoxicidad Inmunológica , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulación de la Expresión Génica , Humanos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
20.
Free Radic Biol Med ; 110: 176-187, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28603085

RESUMEN

Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q10, but due to its highly lipophilic nature, Q10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney.


Asunto(s)
Antioxidantes/farmacología , Células Epiteliales/efectos de los fármacos , Quempferoles/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Polifenoles/farmacología , Ubiquinona/biosíntesis , Animales , Isótopos de Carbono , Línea Celular , Células Epiteliales/citología , Células Epiteliales/enzimología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Células HEK293 , Células HL-60 , Células Hep G2 , Humanos , Marcaje Isotópico , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/enzimología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Sirtuina 3/genética , Sirtuina 3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA