Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
New Phytol ; 222(2): 820-836, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30511456

RESUMEN

Ethylene is the main hormone controlling climacteric fruit ripening; however, the mechanisms underlying the developmental transition leading to the initiation of the ripening process remain elusive, although the presumed role of active hormone interplay has often been postulated. To unravel the putative role of auxin in the unripe-to-ripe transition, we investigated the dynamics of auxin activity in tomato fruit and addressed the physiological significance of Sl-SAUR69, previously identified as a RIN target gene, using reverse genetics approaches. Auxin signalling undergoes dramatic decline at the onset of ripening in wild-type fruit, but not in the nonripening rin mutant. Sl-SAUR69 exhibits reduced expression in rin and its up-regulation results in premature initiation of ripening, whereas its down-regulation extends the time to ripening. Overexpression of Sl-SAUR69 reduces proton pump activity and polar auxin transport, and ectopic expression in Arabidopsis alters auxin transporter abundance, further arguing for its active role in the regulation of auxin transport. The data support a model in which Sl-SAUR69 represses auxin transport, thus generating auxin minima, which results in enhanced ethylene sensitivity. This defines a regulation loop, fed by ethylene and auxin as the main hormonal signals and by RIN and Sl-SAUR69 as modulators of the balance between the two hormones.


Asunto(s)
Etilenos/farmacología , Frutas/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Bombas de Protones/metabolismo , Transducción de Señal , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
2.
J Exp Bot ; 66(17): 5337-49, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26071531

RESUMEN

Lateral organ boundary formation is highly regulated by transcription factors and hormones such as auxins and brassinosteroids. However, in contrast to many other developmental processes in plants, no role for signalling peptides in the regulation of this process has been reported yet. The first characterization of the secreted cysteine-rich TAXIMIN (TAX) signalling peptides in Arabidopsis is presented here. TAX1 overexpression resulted in minor alterations in the primary shoot and root metabolome, abnormal fruit morphology, and fusion of the base of cauline leaves to stems forming a decurrent leaf attachment. The phenotypes at the paraclade junction match TAX1 promoter activity in this region and are similar to loss of LATERAL ORGAN FUSION (LOF) transcription factor function. Nevertheless, TAX1 expression was unchanged in lof1lof2 paraclade junctions and, conversely, LOF gene expression was unchanged in TAX1 overexpressing plants, suggesting TAX1 may act independently. This study identifies TAX1 as the first plant signalling peptide influencing lateral organ separation and implicates the existence of a peptide signal cascade regulating this process in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Señales de Clasificación de Proteína , Alineación de Secuencia
3.
Nat Methods ; 12(3): 207-10, 2 p following 210, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25643149

RESUMEN

The visualization of hormonal signaling input and output is key to understanding how multicellular development is regulated. The plant signaling molecule auxin triggers many growth and developmental responses, but current tools lack the sensitivity or precision to visualize these. We developed a set of fluorescent reporters that allow sensitive and semiquantitative readout of auxin responses at cellular resolution in Arabidopsis thaliana. These generic tools are suitable for any transformable plant species.


Asunto(s)
Arabidopsis/genética , Genes Reporteros , Ácidos Indolacéticos/metabolismo , Elementos de Respuesta/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Imagen Molecular/métodos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Transducción de Señal/genética
4.
Mol Syst Biol ; 10: 751, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25261457

RESUMEN

Phototropism is a growth response allowing plants to align their photosynthetic organs toward incoming light and thereby to optimize photosynthetic activity. Formation of a lateral gradient of the phytohormone auxin is a key step to trigger asymmetric growth of the shoot leading to phototropic reorientation. To identify important regulators of auxin gradient formation, we developed an auxin flux model that enabled us to test in silico the impact of different morphological and biophysical parameters on gradient formation, including the contribution of the extracellular space (cell wall) or apoplast. Our model indicates that cell size, cell distributions, and apoplast thickness are all important factors affecting gradient formation. Among all tested variables, regulation of apoplastic pH was the most important to enable the formation of a lateral auxin gradient. To test this prediction, we interfered with the activity of plasma membrane H⁺ -ATPases that are required to control apoplastic pH. Our results show that H⁺ -ATPases are indeed important for the establishment of a lateral auxin gradient and phototropism. Moreover, we show that during phototropism, H⁺ -ATPase activity is regulated by the phototropin photoreceptors, providing a mechanism by which light influences apoplastic pH.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Membrana Celular/enzimología , Ácidos Indolacéticos/metabolismo , Fototropismo , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Microscopía Confocal , Modelos Teóricos , Fosforilación , Fotosíntesis , Fototropinas/genética , Fototropinas/metabolismo , Fitocromo , Reguladores del Crecimiento de las Plantas
5.
Curr Biol ; 24(19): 2335-42, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25264254

RESUMEN

To control morphogenesis, molecular regulatory networks have to interfere with the mechanical properties of the individual cells of developing organs and tissues, but how this is achieved is not well known. We study this issue here in the shoot meristem of higher plants, a group of undifferentiated cells where complex changes in growth rates and directions lead to the continuous formation of new organs. Here, we show that the plant hormone auxin plays an important role in this process via a dual, local effect on the extracellular matrix, the cell wall, which determines cell shape. Our study reveals that auxin not only causes a limited reduction in wall stiffness but also directly interferes with wall anisotropy via the regulation of cortical microtubule dynamics. We further show that to induce growth isotropy and organ outgrowth, auxin somehow interferes with the cortical microtubule-ordering activity of a network of proteins, including AUXIN BINDING PROTEIN 1 and KATANIN 1. Numerical simulations further indicate that the induced isotropy is sufficient to amplify the effects of the relatively minor changes in wall stiffness to promote organogenesis and the establishment of new growth axes in a robust manner.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Fenómenos Biomecánicos , Pared Celular/metabolismo , Katanina , Meristema/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo
6.
Plant Cell ; 22(2): 376-91, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20164444

RESUMEN

Intracellular redox status is a critical parameter determining plant development in response to biotic and abiotic stress. Thioredoxin (TRX) and glutathione are key regulators of redox homeostasis, and the TRX and glutathione pathways are essential for postembryonic meristematic activities. Here, we show by associating TRX reductases (ntra ntrb) and glutathione biosynthesis (cad2) mutations that these two thiol reduction pathways interfere with developmental processes through modulation of auxin signaling. The triple ntra ntrb cad2 mutant develops normally at the rosette stage, undergoes the floral transition, but produces almost naked stems, reminiscent of the phenotype of several mutants affected in auxin transport or biosynthesis. In addition, the ntra ntrb cad2 mutant shows a loss of apical dominance, vasculature defects, and reduced secondary root production, several phenotypes tightly regulated by auxin. We further show that auxin transport capacities and auxin levels are perturbed in the mutant, suggesting that the NTR-glutathione pathways alter both auxin transport and metabolism. Analysis of ntr and glutathione biosynthesis mutants suggests that glutathione homeostasis plays a major role in auxin transport as both NTR and glutathione pathways are involved in auxin homeostasis.


Asunto(s)
Arabidopsis/metabolismo , Glutatión/metabolismo , Ácidos Indolacéticos/metabolismo , NADP/metabolismo , Transducción de Señal , Tiorredoxinas/metabolismo , Arabidopsis/genética , Genes de Plantas , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA