Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Med Imaging (Bellingham) ; 9(4): 044502, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35937560

RESUMEN

Purpose: Vascular changes are observed from initial stages of breast cancer, and monitoring of vessel structures helps in early detection of malignancies. In recent years, thermal imaging is being evaluated as a low-cost imaging modality to visualize and analyze early vascularity. However, visual inspection of thermal vascularity is challenging and subjective. Therefore, there is a need for automated techniques to assist physicians in visualization and interpretation of vascularity by marking the vessel structures and by providing quantified qualitative parameters that helps in malignancy classification Approach: In the literature, there are very few approaches for vascular analysis and classification of breast thermal images using interpretable vascular features. One major challenge is the automated detection of breast vascularity due to diffused vessel boundaries. We first propose a deep learning-based semantic segmentation approach that generates heatmaps of vessel structures from two-dimensional breast thermal images for quantitative assessment of breast vascularity. Second, we extract interpretable vascular parameters and propose a classifier to predict likelihood of breast cancer purely from the extracted vascular parameters. Results: The results of the cancer classifier were validated using an independent clinical dataset consisting of 258 participants. The results were encouraging as the proposed approach segmented vessels well and gave a good classification performance with area under receiver operating characteristic curve of 0.85 with the proposed vascularity parameters. Conclusions: The detected vasculature and its associated high classification performance show the utility of the proposed approach in interpretation of breast vascularity.

2.
Front Artif Intell ; 5: 1050803, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686848

RESUMEN

Objective: Artificial intelligence-enhanced breast thermography is being evaluated as an ancillary modality in the evaluation of breast disease. The objective of this study was to evaluate the clinical performance of Thermalytix, a CE-marked, AI-based thermal imaging test, with respect to conventional mammography. Methods: A prospective, comparative study performed between 15 December 2018 and 06 January 2020 evaluated the performance of Thermalytix in 459 women with both dense and nondense breast tissue. Both symptomatic and asymptomatic women, aged 30-80 years, presenting to the hospital underwent Thermalytix followed by 2-D mammography and appropriate confirmatory investigations to confirm malignancy. The radiologist interpreting the mammograms and the technician using the Thermalytix tool were blinded to the others' findings. The statistical analysis was performed by a third party. Results: A total of 687 women were recruited, of whom 459 fulfilled the inclusion criteria. Twenty-one malignancies were detected (21/459, 4.6%). The overall sensitivity of Thermalytix was 95.24% (95% CI, 76.18-99.88), and the specificity was 88.58% (95% CI, 85.23-91.41). In women with dense breasts (n = 168, 36.6%), the sensitivity was 100% (95% CI, 69.15-100), and the specificity was 81.65% (95% CI, 74.72-87.35). Among these 168 women, 37 women (22%) were reported as BI-RADS 0 on mammography; in this subset, the sensitivity of Thermalytix was 100% (95% CI, 69.15-100), and the specificity was 77.22% (95% CI, 69.88-83.50). Conclusion: Thermalytix showed acceptable sensitivity and specificity with respect to mammography in the overall patient population. Thermalytix outperformed mammography in women with dense breasts and those reported as BI-RADS 0.

3.
BMC Genomics ; 18(Suppl 3): 233, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28361685

RESUMEN

BACKGROUND: Metastasis via pelvic and/or para-aortic lymph nodes is a major risk factor for endometrial cancer. Lymph-node resection ameliorates risk but is associated with significant co-morbidities. Incidence in patients with stage I disease is 4-22% but no mechanism exists to accurately predict it. Therefore, national guidelines for primary staging surgery include pelvic and para-aortic lymph node dissection for all patients whose tumor exceeds 2cm in diameter. We sought to identify a robust molecular signature that can accurately classify risk of lymph node metastasis in endometrial cancer patients. 86 tumors matched for age and race, and evenly distributed between lymph node-positive and lymph node-negative cases, were selected as a training cohort. Genomic micro-RNA expression was profiled for each sample to serve as the predictive feature matrix. An independent set of 28 tumor samples was collected and similarly characterized to serve as a test cohort. RESULTS: A feature selection algorithm was designed for applications where the number of samples is far smaller than the number of measured features per sample. A predictive miRNA expression signature was developed using this algorithm, which was then used to predict the metastatic status of the independent test cohort. A weighted classifier, using 18 micro-RNAs, achieved 100% accuracy on the training cohort. When applied to the testing cohort, the classifier correctly predicted 90% of node-positive cases, and 80% of node-negative cases (FDR = 6.25%). CONCLUSION: Results indicate that the evaluation of the quantitative sparse-feature classifier proposed here in clinical trials may lead to significant improvement in the prediction of lymphatic metastases in endometrial cancer patients.


Asunto(s)
Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/genética , Genómica/métodos , Algoritmos , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , MicroARNs/genética , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico
4.
Annu Rev Pharmacol Toxicol ; 55: 15-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25423479

RESUMEN

This article reviews several techniques from machine learning that can be used to study the problem of identifying a small number of features, from among tens of thousands of measured features, that can accurately predict a drug response. Prediction problems are divided into two categories: sparse classification and sparse regression. In classification, the clinical parameter to be predicted is binary, whereas in regression, the parameter is a real number. Well-known methods for both classes of problems are briefly discussed. These include the SVM (support vector machine) for classification and various algorithms such as ridge regression, LASSO (least absolute shrinkage and selection operator), and EN (elastic net) for regression. In addition, several well-established methods that do not directly fall into machine learning theory are also reviewed, including neural networks, PAM (pattern analysis for microarrays), SAM (significance analysis for microarrays), GSEA (gene set enrichment analysis), and k-means clustering. Several references indicative of the application of these methods to cancer biology are discussed.


Asunto(s)
Antineoplásicos/uso terapéutico , Inteligencia Artificial , Descubrimiento de Drogas/métodos , Farmacología/métodos , Medicina de Precisión/métodos , Algoritmos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Análisis por Conglomerados , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Redes Neurales de la Computación , Seguridad del Paciente , Selección de Paciente , Reconocimiento de Normas Patrones Automatizadas , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA