Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Hazard Mater ; 468: 133814, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412802

RESUMEN

The oil industry's expansion and increased operational activity at older installations, along with their demolition, contribute to rising cumulative pollution and a heightened risk of accidental oil spills. The lesser sandeel (Ammodytes marinus) is a keystone prey species in the North Sea and coastal systems. Their eggs adhere to the seabed substrate making them particularly vulnerable to oil exposure during embryonic development. We evaluated the sensitivity of sandeel embryos to crude oil in a laboratory by exposing them to dispersed oil at concentrations of 0, 15, 50, and 150 µg/L oil between 2 and 16 days post-fertilization. We assessed water and tissue concentrations of THC and tPAH, cyp1a expression, lipid distribution in the eyes, head and trunk, and morphological and functional deformities. Oil droplets accumulated on the eggshell in all oil treatment groups, to which the embryo responded by a dose-dependent rise in cyp1a expression. The oil exposure led to only minor sublethal deformities in the upper jaw and otic vesicle. The findings suggest that lesser sandeel embryos are resilient to crude oil exposure. The lowest observed effect level documented in this study was 36 µg THC/L and 3 µg tPAH/L. The inclusion of these species-specific data in risk assessment models will enhance the precision of risk evaluations for the North Atlantic ecosystems.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Petróleo/toxicidad , Cáscara de Huevo , Ecosistema , Agua , Contaminantes Químicos del Agua/toxicidad
2.
Sci Total Environ ; 904: 166951, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696403

RESUMEN

Laboratory experiments provide knowledge of species-specific effects thresholds that are used to parameterize impact assessment models of oil contamination on marine ecosystems. Such experiments typically place individuals of species and life stages in tanks with different contaminant concentrations. Exposure concentrations are usually fixed, and the individuals experience a shock treatment being moved from clean water directly into contaminated water and then back to clean water. In this study, we use a coupled numerical model that simulates ocean currents and state, oil dispersal and fate, and early life stages of fish to quantify oil exposure histories, specifically addressing oil spill scenarios of high rates and long durations. By including uptake modelling we also investigate the potential of buffering transient high peaks in exposure. Our simulation results are the basis for a recommendation on the design of laboratory experiments to improve impact assessment model development and parameterization. We recommend an exposure profile with three main phases: i) a gradual increase in concentration, ii) a transient peak that is well above the subsequent level, and iii) a plateau of fixed concentration lasting ∼3 days. In addition, a fourth phase with a slow decrease may be added.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Ecosistema , Peces , Contaminación del Agua , Agua , Contaminantes Químicos del Agua/análisis
3.
Mar Pollut Bull ; 190: 114843, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36965263

RESUMEN

Atlantic haddock (Melanogrammus aeglefinus) embryos bind dispersed crude oil droplets to the eggshell and are consequently highly susceptible to toxicity from spilled oil. We established thresholds for developmental toxicity and identified any potential long-term or latent adverse effects that could impair the growth and survival of individuals. Embryos were exposed to oil for eight days (10, 80 and 300 µg oil/L, equivalent to 0.1, 0.8 and 3.0 µg TPAH/L). Acute and delayed mortality were observed at embryonic, larval, and juvenile stages with IC50 = 2.2, 0.39, and 0.27 µg TPAH/L, respectively. Exposure to 0.1 µg TPAH/L had no negative effect on growth or survival. However, yolk sac larvae showed significant reduction in the outgrowth (ballooning) of the cardiac ventricle in the absence of other extracardiac morphological defects. Due to this propensity for latent sublethal developmental toxicity, we recommend an effect threshold of 0.1 µg TPAH/L for risk assessment models.


Asunto(s)
Gadiformes , Hidrocarburos Aromáticos , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Animales , Petróleo/toxicidad , Petróleo/análisis , Gadiformes/metabolismo , Larva/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Technol ; 54(21): 13879-13887, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32990430

RESUMEN

Exposure to environmentally relevant concentrations of oil could impact survival of fish larvae in situ through subtle effects on larval behavior. During the larval period, Atlantic haddock (Melanogrammus aeglefinus) are transported toward nursery grounds by ocean currents and active swimming, which can modify their drift route. Haddock larvae are sensitive to dispersed oil; however, whether exposure to oil during development impacts the ability of haddock larvae to swim in situ is unknown. Here, we exposed Atlantic haddock embryos to 10 and 80 µg oil/L (0.1 and 0.8 µg ∑PAH/L) of crude oil for 8 days and used a novel approach to measure its effect on the larval swimming behavior in situ. We assessed the swimming behavior of 138 haddock larvae in situ, in the North Sea, using a transparent drifting chamber. Expression of cytochrome P4501a (cyp1a) was also measured. Exposure to 10 and 80 µg oil/L significantly reduced the average in situ routine swimming speed by 30-40% compared to the controls. Expression of cyp1a was significantly higher in both exposed groups. This study reports key information for improving oil spill risk assessment models and presents a novel approach to study sublethal effects of pollutants on fish larvae in situ.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Animales , Citocromos , Larva , Mar del Norte , Natación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
6.
Mar Pollut Bull ; 129(1): 336-342, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29680556

RESUMEN

It has been proposed that the multiple pressures of fishing and petroleum activities impact fish stocks in synergy, as fishing-induced demographic changes in a stock may lead to increased sensitivity to detrimental effects of acute oil spills. High fishing pressure may erode the demographic structure of fish stocks, lead to less diverse spawning strategies, and more concentrated distributions of offspring in space and time. Hence an oil spill may potentially hit a larger fraction of a year-class of offspring. Such a link between demographic structure and egg distribution was recently demonstrated for the Northeast Arctic stock of Atlantic cod for years 1959-1993. We here estimate that this variation translates into a two-fold variation in the maximal proportion of cod eggs potentially exposed to a large oil spill. With this information it is possible to quantitatively account for demographic structure in prospective studies of population effects of possible oil spills.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Explotaciones Pesqueras , Gadus morhua/crecimiento & desarrollo , Contaminación por Petróleo/efectos adversos , Animales , Regiones Árticas , Simulación por Computador , Dinámica Poblacional , Reproducción
7.
Environ Sci Technol ; 49(10): 6061-9, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25875213

RESUMEN

Early life stages of fish are particularly vulnerable to oil spills. Simulations of overlap of fish eggs and larvae with oil from different oil-spill scenarios, both without and with the dispersant Corexit 9500, enable quantitative comparisons of dispersants as a mitigation alternative. We have used model simulations of a blow out of 4500 m(3) of crude oil per day (Statfjord light crude) for 30 days at three locations along the Norwegian coast. Eggs were released from nine different known spawning grounds, in the period from March 1st until the end of April, and all spawning products were followed for 90 days from the spill start at April first independent of time for spawning. We have modeled overlap between spawning products and oil concentrations giving a total polycyclic hydrocarbon (TPAH) concentration of more than 1.0 or 0.1 ppb (µg/l). At these orders of magnitude, we expect acute mortality or sublethal effects, respectively. In general, adding dispersants results in higher concentrations of TPAHs in a reduced volume of water compared to not adding dispersants. Also, the TPAHs are displaced deeper in the water column. Model simulations of the spill scenarios showed that addition of chemical dispersant in general moderately decreased the fraction of eggs and larvae that were exposed above the selected threshold values.


Asunto(s)
Restauración y Remediación Ambiental/estadística & datos numéricos , Larva/efectos de los fármacos , Contaminación por Petróleo/análisis , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Huevos , Monitoreo del Ambiente , Restauración y Remediación Ambiental/métodos , Peces , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA