Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Development ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373104

RESUMEN

During liver development, bipotential progenitor cells called hepatoblasts differentiate into hepatocytes or cholangiocytes. Hepatocyte differentiation is uniquely associated with multi-axial polarity, enabling the anisotropic expansion of apical lumina between adjacent cells and formation of a three-dimensional network of bile canaliculi (BC). Cholangiocytes, the cells forming the bile ducts, exhibit the vectorial polarity characteristic of epithelial cells. Whether cell polarization feeds back on the gene regulatory pathways governing hepatoblast differentiation is unknown. Here, we used primary hepatoblasts to investigate the contribution of anisotropic apical expansion to hepatocyte differentiation. Silencing of the small GTPase Rab35 caused isotropic lumen expansion and formation of multicellular cysts with the vectorial polarity of cholangiocytes. Gene expression profiling revealed that these cells express reduced levels of hepatocyte markers and upregulate genes associated with cholangiocyte identity. Time-course RNA sequencing demonstrated that loss of lumen anisotropy precedes these transcriptional changes. Independent alterations in apical lumen morphology induced either by modulation of the subapical actomyosin cortex or increased intraluminal pressure caused similar transcriptional changes. These findings suggest that cell polarity and lumen morphogenesis feedback to hepatoblast-to-hepatocyte differentiation.

2.
J Cell Biol ; 220(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34328499

RESUMEN

Lumen morphogenesis results from the interplay between molecular pathways and mechanical forces. In several organs, epithelial cells share their apical surfaces to form a tubular lumen. In the liver, however, hepatocytes share the apical surface only between adjacent cells and form narrow lumina that grow anisotropically, generating a 3D network of bile canaliculi (BC). Here, by studying lumenogenesis in differentiating mouse hepatoblasts in vitro, we discovered that adjacent hepatocytes assemble a pattern of specific extensions of the apical membrane traversing the lumen and ensuring its anisotropic expansion. These previously unrecognized structures form a pattern, reminiscent of the bulkheads of boats, also present in the developing and adult liver. Silencing of Rab35 resulted in loss of apical bulkheads and lumen anisotropy, leading to cyst formation. Strikingly, we could reengineer hepatocyte polarity in embryonic liver tissue, converting BC into epithelial tubes. Our results suggest that apical bulkheads are cell-intrinsic anisotropic mechanical elements that determine the elongation of BC during liver tissue morphogenesis.


Asunto(s)
Anisotropía , Canalículos Biliares/metabolismo , Membrana Celular/metabolismo , Hepatocitos/metabolismo , Animales , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Organogénesis , Embarazo
3.
PLoS Comput Biol ; 16(5): e1007843, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32469863

RESUMEN

Reconstructing haplotypes from sequencing data is one of the major challenges in genetics. Haplotypes play a crucial role in many analyses, including genome-wide association studies and population genetics. Haplotype reconstruction becomes more difficult for higher numbers of homologous chromosomes, as it is often the case for polyploid plants. This complexity is compounded further by higher heterozygosity, which denotes the frequent presence of variants between haplotypes. We have designed Ranbow, a new tool for haplotype reconstruction of polyploid genome from short read sequencing data. Ranbow integrates all types of small variants in bi- and multi-allelic sites to reconstruct haplotypes. To evaluate Ranbow and currently available competing methods on real data, we have created and released a real gold standard dataset from sweet potato sequencing data. Our evaluations on real and simulated data clearly show Ranbow's superior performance in terms of accuracy, haplotype length, memory usage, and running time. Specifically, Ranbow is one order of magnitude faster than the next best method. The efficiency and accuracy of Ranbow makes whole genome haplotype reconstruction of complex genome with higher ploidy feasible.


Asunto(s)
Haplotipos , Poliploidía , Algoritmos , Conjuntos de Datos como Asunto , Heterocigoto , Humanos
4.
mBio ; 11(2)2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209695

RESUMEN

Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.IMPORTANCE Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila.


Asunto(s)
Galectinas/genética , Interacciones Huésped-Patógeno , Legionella pneumophila/fisiología , Macrófagos/microbiología , MicroARNs/genética , Proteínas de Resistencia a Mixovirus/genética , Galectinas/metabolismo , Regulación de la Expresión Génica/inmunología , Humanos , Enfermedad de los Legionarios/microbiología , Macrófagos/inmunología , MicroARNs/inmunología , Proteínas de Resistencia a Mixovirus/metabolismo , Proteoma , Transducción de Señal , Células THP-1 , Factores de Virulencia
5.
Mol Syst Biol ; 15(5): e8339, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118277

RESUMEN

In chronic lymphocytic leukemia (CLL), a diverse set of genetic mutations is embedded in a deregulated epigenetic landscape that drives cancerogenesis. To elucidate the role of aberrant chromatin features, we mapped DNA methylation, seven histone modifications, nucleosome positions, chromatin accessibility, binding of EBF1 and CTCF, as well as the transcriptome of B cells from CLL patients and healthy donors. A globally increased histone deacetylase activity was detected and half of the genome comprised transcriptionally downregulated partially DNA methylated domains demarcated by CTCF CLL samples displayed a H3K4me3 redistribution and nucleosome gain at promoters as well as changes of enhancer activity and enhancer linkage to target genes. A DNA binding motif analysis identified transcription factors that gained or lost binding in CLL at sites with aberrant chromatin features. These findings were integrated into a gene regulatory enhancer containing network enriched for B-cell receptor signaling pathway components. Our study predicts novel molecular links to targets of CLL therapies and provides a valuable resource for further studies on the epigenetic contribution to the disease.


Asunto(s)
Cromatina/química , Regulación Leucémica de la Expresión Génica , Redes Reguladoras de Genes , Histonas/química , Leucemia Linfocítica Crónica de Células B/genética , Anciano , Secuencias de Aminoácidos , Sitios de Unión , Factor de Unión a CCCTC/genética , ADN/química , Metilación de ADN , Regulación hacia Abajo , Elementos de Facilitación Genéticos , Histona Desacetilasas/genética , Humanos , Persona de Mediana Edad , Regiones Promotoras Genéticas , Unión Proteica , Transactivadores/genética
6.
Nat Cell Biol ; 21(3): 305-310, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742094

RESUMEN

Balanced chromosomal rearrangements such as inversions and translocations can cause congenital disease or cancer by inappropriately rewiring promoter-enhancer contacts1,2. To study the potentially pathogenic consequences of balanced chromosomal rearrangements, we generated a series of genomic inversions by placing an active limb enhancer cluster from the Epha4 regulatory domain at different positions within a neighbouring gene-dense region and investigated their effects on gene regulation in vivo in mice. Expression studies and high-throughput chromosome conformation capture from embryonic limb buds showed that the enhancer cluster activated several genes downstream that are located within asymmetric regions of contact, the so-called architectural stripes3. The ectopic activation of genes led to a limb phenotype that could be rescued by deleting the CCCTC-binding factor (CTCF) anchor of the stripe. Architectural stripes appear to be driven by enhancer activity, because they do not form in mouse embryonic stem cells. Furthermore, we show that architectural stripes are a frequent feature of developmental three-dimensional genome architecture often associated with active enhancers. Therefore, balanced chromosomal rearrangements can induce ectopic gene expression and the formation of asymmetric chromatin contact patterns that are dependent on CTCF anchors and enhancer activity.


Asunto(s)
Inversión Cromosómica , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Esbozos de los Miembros/metabolismo , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromosomas de los Mamíferos/genética , Genómica/métodos , Esbozos de los Miembros/embriología , Ratones , Receptor EphA4/genética , Receptor EphA4/metabolismo
7.
Cell Rep ; 24(10): 2784-2794, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184510

RESUMEN

Neutrophils are short-lived blood cells that play a critical role in host defense against infections. To better comprehend neutrophil functions and their regulation, we provide a complete epigenetic overview, assessing important functional features of their differentiation stages from bone marrow-residing progenitors to mature circulating cells. Integration of chromatin modifications, methylation, and transcriptome dynamics reveals an enforced regulation of differentiation, for cellular functions such as release of proteases, respiratory burst, cell cycle regulation, and apoptosis. We observe an early establishment of the cytotoxic capability, while the signaling components that activate these antimicrobial mechanisms are transcribed at later stages, outside the bone marrow, thus preventing toxic effects in the bone marrow niche. Altogether, these data reveal how the developmental dynamics of the chromatin landscape orchestrate the daily production of a large number of neutrophils required for innate host defense and provide a comprehensive overview of differentiating human neutrophils.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Humanos
8.
Genome Med ; 10(1): 55, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30029672

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related deaths worldwide and is primarily treated with radiation, surgery, and platinum-based drugs like cisplatin and carboplatin. The major challenge in the treatment of NSCLC patients is intrinsic or acquired resistance to chemotherapy. Molecular markers predicting the outcome of the patients are urgently needed. METHODS: Here, we employed patient-derived xenografts (PDXs) to detect predictive methylation biomarkers for platin-based therapies. We used MeDIP-Seq to generate genome-wide DNA methylation profiles of 22 PDXs, their parental primary NSCLC, and their corresponding normal tissues and complemented the data with gene expression analyses of the same tissues. Candidate biomarkers were validated with quantitative methylation-specific PCRs (qMSP) in an independent cohort. RESULTS: Comprehensive analyses revealed that differential methylation patterns are highly similar, enriched in PDXs and lung tumor-specific when comparing differences in methylation between PDXs versus primary NSCLC. We identified a set of 40 candidate regions with methylation correlated to carboplatin response and corresponding inverse gene expression pattern even before therapy. This analysis led to the identification of a promoter CpG island methylation of LDL receptor-related protein 12 (LRP12) associated with increased resistance to carboplatin. Validation in an independent patient cohort (n = 35) confirmed that LRP12 methylation status is predictive for therapeutic response of NSCLC patients to platin therapy with a sensitivity of 80% and a specificity of 84% (p < 0.01). Similarly, we find a shorter survival time for patients with LRP12 hypermethylation in the TCGA data set for NSCLC (lung adenocarcinoma). CONCLUSIONS: Using an epigenome-wide sequencing approach, we find differential methylation patterns from primary lung cancer and PDX-derived cancers to be very similar, albeit with a lower degree of differential methylation in primary tumors. We identify LRP12 DNA methylation as a powerful predictive marker for carboplatin resistance. These findings outline a platform for the identification of epigenetic therapy resistance biomarkers based on PDX NSCLC models.


Asunto(s)
Biomarcadores de Tumor/genética , Carboplatino/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Metilación de ADN/genética , Epigenómica , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Biomarcadores de Tumor/metabolismo , Carboplatino/farmacología , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos/genética , Genes Supresores de Tumor , Genoma Humano , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Neoplasias Pulmonares/genética , Ratones Desnudos , Regiones Promotoras Genéticas , Resultado del Tratamiento
9.
Cell Stem Cell ; 23(2): 266-275.e6, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29910149

RESUMEN

Transcription factor (TF)-mediated reprogramming to pluripotency is a slow and inefficient process, because most pluripotency TFs fail to access relevant target sites in a refractory chromatin environment. It is still unclear how TFs actually orchestrate the opening of repressive chromatin during the long latency period of reprogramming. Here, we show that the orphan nuclear receptor Esrrb plays a pioneering role in recruiting the core pluripotency factors Oct4, Sox2, and Nanog to inactive enhancers in closed chromatin during the reprogramming of epiblast stem cells. Esrrb binds to silenced enhancers containing stable nucleosomes and hypermethylated DNA, which are inaccessible to the core factors. Esrrb binding is accompanied by local loss of DNA methylation, LIF-dependent engagement of p300, and nucleosome displacement, leading to the recruitment of core factors within approximately 2 days. These results suggest that TFs can drive rapid remodeling of the local chromatin structure, highlighting the remarkable plasticity of stable epigenetic information.


Asunto(s)
Reprogramación Celular , Elementos de Facilitación Genéticos/genética , Silenciador del Gen , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Línea Celular , Cromatina/química , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Masculino , Ratones , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo
10.
Nucleic Acids Res ; 46(6): 2868-2882, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29385519

RESUMEN

Genomic binding of transcription factors, like the glucocorticoid receptor (GR), is linked to the regulation of genes. However, as we show here, GR binding is a poor predictor of GR-dependent gene regulation even when taking the 3D organization of the genome into account. To connect GR binding sites to the regulation of genes in the endogenous genomic context, we turned to genome editing. By deleting GR binding sites, individually or in combination, we uncovered how cooperative interactions between binding sites contribute to the regulation of genes. Specifically, for the GR target gene GILZ, we show that the simultaneous presence of a cluster of GR binding sites is required for the activity of an individual enhancer and that the GR-dependent regulation of GILZ depends on multiple GR-bound enhancers. Further, by deleting GR binding sites that are shared between different cell types, we show how cell type-specific genome organization and enhancer-blocking can result in cell type-specific wiring of promoter-enhancer contacts. This rewiring allows an individual GR binding site shared between different cell types to direct the expression of distinct transcripts and thereby contributes to the cell type-specific consequences of glucocorticoid signaling.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Genoma/genética , Genómica/métodos , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/metabolismo , Células A549 , Animales , Secuencia de Bases , Sitios de Unión/genética , Línea Celular Tumoral , Dexametasona/farmacología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Humanos , Unión Proteica
11.
Nat Genet ; 49(10): 1539-1545, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846100

RESUMEN

Copy number variations (CNVs) often include noncoding sequences and putative enhancers, but how these rearrangements induce disease is poorly understood. Here we investigate CNVs involving the regulatory landscape of IHH (encoding Indian hedgehog), which cause multiple, highly localized phenotypes including craniosynostosis and synpolydactyly. We show through transgenic reporter and genome-editing studies in mice that Ihh is regulated by a constellation of at least nine enhancers with individual tissue specificities in the digit anlagen, growth plates, skull sutures and fingertips. Consecutive deletions, resulting in growth defects of the skull and long bones, showed that these enhancers function in an additive manner. Duplications, in contrast, caused not only dose-dependent upregulation but also misexpression of Ihh, leading to abnormal phalanges, fusion of sutures and syndactyly. Thus, precise spatiotemporal control of developmental gene expression is achieved by complex multipartite enhancer ensembles. Alterations in the composition of such clusters can result in gene misexpression and disease.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/fisiología , Osteogénesis/genética , Animales , Secuencia de Bases , Variaciones en el Número de Copia de ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Deformidades Congénitas del Pie/genética , Eliminación de Gen , Dosificación de Gen , Duplicación de Gen , Técnicas de Inactivación de Genes , Genes Reporteros , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Ratones , Ratones Endogámicos C57BL , Polidactilia/genética , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ADN , Cráneo/anomalías , Transcripción Genética
12.
Nat Plants ; 3(9): 696-703, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28827752

RESUMEN

Here we present the 15 pseudochromosomes of sweet potato, Ipomoea batatas, the seventh most important crop in the world and the fourth most significant in China. By using a novel haplotyping method based on genome assembly, we have produced a half haplotype-resolved genome from ~296 Gb of paired-end sequence reads amounting to roughly 67-fold coverage. By phylogenetic tree analysis of homologous chromosomes, it was possible to estimate the time of two recent whole-genome duplication events as occurring about 0.8 and 0.5 million years ago. This half haplotype-resolved hexaploid genome represents the first successful attempt to investigate the complexity of chromosome sequence composition directly in a polyploid genome, using sequencing of the polyploid organism itself rather than any of its simplified proxy relatives. Adaptation and application of our approach should provide higher resolution in future genomic structure investigations, especially for similarly complex genomes.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Ipomoea batatas/genética , China , Productos Agrícolas , Haplotipos , Filogenia , Poliploidía
13.
Nature ; 538(7624): 265-269, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27706140

RESUMEN

Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Variaciones en el Número de Copia de ADN/genética , Enfermedad/genética , Duplicación de Gen/genética , Animales , ADN/genética , Facies , Femenino , Fibroblastos , Dedos/anomalías , Deformidades Congénitas del Pie/genética , Expresión Génica , Genómica , Deformidades Congénitas de la Mano/genética , Masculino , Ratones , Fenotipo , Factor de Transcripción SOX9/genética
14.
Nat Commun ; 7: 12621, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581526

RESUMEN

The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes.


Asunto(s)
ADN/genética , Receptores de Glucocorticoides , Secuencia de Bases , Sitios de Unión/genética , Línea Celular Tumoral , Humanos , Dominios Proteicos/genética , Estructura Cuaternaria de Proteína/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/ultraestructura , Factores de Transcripción/genética
15.
J Infect Dis ; 214(3): 454-63, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27130431

RESUMEN

BACKGROUND: Legionella pneumophila is a causative agent of severe pneumonia. Infection leads to a broad host cell response, as evident, for example, on the transcriptional level. Chromatin modifications, which control gene expression, play a central role in the transcriptional response to L. pneumophila METHODS: We infected human-blood-derived macrophages (BDMs) with L. pneumophila and used chromatin immunoprecipitation followed by sequencing to screen for gene promoters with the activating histone 4 acetylation mark. RESULTS: We found the promoter of tumor necrosis factor α-induced protein 2 (TNFAIP2) to be acetylated at histone H4. This factor has not been characterized in the pathology of L. pneumophila TNFAIP2 messenger RNA and protein were upregulated in response to L. pneumophila infection of human-BDMs and human alveolar epithelial (A549) cells. We showed that L. pneumophila-induced TNFAIP2 expression is dependent on the NF-κB transcription factor. Importantly, knock down of TNFAIP2 led to reduced intracellular replication of L. pneumophila Corby in A549 cells. CONCLUSIONS: Taken together, genome-wide chromatin analysis of L. pneumophila-infected macrophages demonstrated induction of TNFAIP2, a NF-κB-dependent factor relevant for bacterial replication.


Asunto(s)
Citocinas/análisis , Interacciones Huésped-Patógeno , Legionella pneumophila/patogenicidad , Macrófagos/química , Macrófagos/microbiología , Acetilación , Línea Celular , Cromatina/química , Inmunoprecipitación de Cromatina , Citocinas/genética , Células Epiteliales/química , Células Epiteliales/microbiología , Histonas/análisis , Humanos
16.
Genome Res ; 25(6): 825-35, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25720775

RESUMEN

The classical DNA recognition sequence of the glucocorticoid receptor (GR) appears to be present at only a fraction of bound genomic regions. To identify sequences responsible for recruitment of this transcription factor (TF) to individual loci, we turned to the high-resolution ChIP-exo approach. We exploited this signal by determining footprint profiles of TF binding at single-base-pair resolution using ExoProfiler, a computational pipeline based on DNA binding motifs. When applied to our GR and the few available public ChIP-exo data sets, we find that ChIP-exo footprints are protein- and recognition sequence-specific signatures of genomic TF association. Furthermore, we show that ChIP-exo captures information about TFs other than the one directly targeted by the antibody in the ChIP procedure. Consequently, the shape of the ChIP-exo footprint can be used to discriminate between direct and indirect (tethering to other DNA-bound proteins) DNA association of GR. Together, our findings indicate that the absence of classical recognition sequences can be explained by direct GR binding to a broader spectrum of sequences than previously known, either as a homodimer or as a heterodimer binding together with a member of the ETS or TEAD families of TFs, or alternatively by indirect recruitment via FOX or STAT proteins. ChIP-exo footprints also bring structural insights and locate DNA:protein cross-link points that are compatible with crystal structures of the studied TFs. Overall, our generically applicable footprint-based approach uncovers new structural and functional insights into the diverse ways of genomic cooperation and association of TFs.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Genómica , Factor Nuclear 3-alfa del Hepatocito/genética , Receptores de Glucocorticoides/genética , Factor de Unión a CCCTC , Línea Celular Tumoral , Biología Computacional , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Perfilación de la Expresión Génica , Sitios Genéticos , Células HeLa , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Células K562 , Células MCF-7 , Unión Proteica , Conformación Proteica , Receptores de Glucocorticoides/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN
17.
Genome Biol ; 16: 7, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25650807

RESUMEN

Genomic translocation events frequently underlie cancer development through generation of gene fusions with oncogenic properties. Identification of such fusion transcripts by transcriptome sequencing might help to discover new potential therapeutic targets. We developed TRUP (Tumor-specimen suited RNA-seq Unified Pipeline) (https://github.com/ruping/TRUP), a computational approach that combines split-read and read-pair analysis with de novo assembly for the identification of chimeric transcripts in cancer specimens. We apply TRUP to RNA-seq data of different tumor types, and find it to be more sensitive than alternative tools in detecting chimeric transcripts, such as secondary rearrangements in EML4-ALK-positive lung tumors, or recurrent inactivating rearrangements affecting RASSF8.


Asunto(s)
Puntos de Rotura del Cromosoma , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Fusión de Oncogenes , Transcriptoma , Translocación Genética , Secuencia de Bases , Línea Celular Tumoral , Análisis por Conglomerados , Biología Computacional/métodos , Silenciador del Gen , Genómica , Humanos , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Supresoras de Tumor/genética
18.
Eur J Hum Genet ; 23(6): 870-3, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25293717

RESUMEN

Neurofibromatosis type 1 (NF1) (MIM#162200) is a relatively frequent genetic condition that predisposes to tumor formation. The main types of tumors occurring in NF1 patients are cutaneous and subcutaneous neurofibromas, plexiform neurofibromas, optic pathway gliomas, and malignant peripheral nerve sheath tumors. To search for somatic mutations in cutaneous (dermal) neurofibromas, whole-exome sequencing (WES) was performed on seven spatially separated tumors and two reference tissues (blood and unaffected skin) from a single NF1 patient. Validation of WES findings was done using routine Sanger sequencing or Sequenom IPlex SNP genotyping. Exome sequencing confirmed the existence of a known familial splice-site mutation NM_000267.3:c.3113+1G>A in exon 23 of NF1 gene (HGMD ID CS951480) in blood, unaffected skin, and all tumor samples. In five out of seven analyzed tumors, we additionally detected second-hit mutations in the NF1 gene. Four of them were novel and one was previously observed. Each mutation was distinct, demonstrating the independent origin of each tumor. Only in two of seven tumors we detected an additional somatic mutation that was not associated with NF1. Our study demonstrated that somatic mutations of NF1 are likely the main drivers of cutaneous tumor formation. The study provides evidence for the rareness of single base pair level alterations in the exomes of benign NF1 cutaneous tumors.


Asunto(s)
Mutación , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Neoplasias Cutáneas/genética , Evolución Clonal , Exoma , Femenino , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
19.
Bioinformatics ; 30(17): 2456-63, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24812340

RESUMEN

MOTIVATION: Cancer cell genomes acquire several genetic alterations during somatic evolution from a normal cell type. The relative order in which these mutations accumulate and contribute to cell fitness is affected by epistatic interactions. Inferring their evolutionary history is challenging because of the large number of mutations acquired by cancer cells as well as the presence of unknown epistatic interactions. RESULTS: We developed Bayesian Mutation Landscape (BML), a probabilistic approach for reconstructing ancestral genotypes from tumor samples for much larger sets of genes than previously feasible. BML infers the likely sequence of mutation accumulation for any set of genes that is recurrently mutated in tumor samples. When applied to tumor samples from colorectal, glioblastoma, lung and ovarian cancer patients, BML identifies the diverse evolutionary scenarios involved in tumor initiation and progression in greater detail, but broadly in agreement with prior results. AVAILABILITY AND IMPLEMENTATION: Source code and all datasets are freely available at bml.molgen.mpg.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Evolución Clonal , Neoplasias/genética , Algoritmos , Teorema de Bayes , Genes Relacionados con las Neoplasias , Genotipo , Humanos , Mutación
20.
Nat Commun ; 5: 3518, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24670920

RESUMEN

Pulmonary carcinoids are rare neuroendocrine tumours of the lung. The molecular alterations underlying the pathogenesis of these tumours have not been systematically studied so far. Here we perform gene copy number analysis (n=54), genome/exome (n=44) and transcriptome (n=69) sequencing of pulmonary carcinoids and observe frequent mutations in chromatin-remodelling genes. Covalent histone modifiers and subunits of the SWI/SNF complex are mutated in 40 and 22.2% of the cases, respectively, with MEN1, PSIP1 and ARID1A being recurrently affected. In contrast to small-cell lung cancer and large-cell neuroendocrine lung tumours, TP53 and RB1 mutations are rare events, suggesting that pulmonary carcinoids are not early progenitor lesions of the highly aggressive lung neuroendocrine tumours but arise through independent cellular mechanisms. These data also suggest that inactivation of chromatin-remodelling genes is sufficient to drive transformation in pulmonary carcinoids.


Asunto(s)
Tumor Carcinoide/genética , Ensamble y Desensamble de Cromatina/genética , Neoplasias Pulmonares/genética , Mutación , Adolescente , Adulto , Anciano , Secuencia de Bases , Tumor Carcinoide/patología , Mapeo Cromosómico , Variaciones en el Número de Copia de ADN , Exoma/genética , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA