Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Rep ; 12(1): 19622, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380004

RESUMEN

Urinary tract infections (UTIs) are common and frequently precipitate delirium-like states. Advanced age coincident with the postmenopausal period is a risk factor for delirium following UTIs. We previously demonstrated a pathological role for interleukin-6 (IL-6) in mediating delirium-like phenotypes in a murine model of UTI. Estrogen has been implicated in reducing peripheral IL-6 expression, but it is unknown whether the increased susceptibility of postmenopausal females to developing delirium concomitant with UTIs reflects diminished effects of circulating estrogen. Here, we tested this hypothesis in a mouse model of UTI. Female C57BL/6J mice were oophorectomized, UTIs induced by transurethral inoculation of E. coli, and treated with 17ß-estradiol. Delirium-like behaviors were evaluated prior to and following UTI and 17ß-estradiol treatment. Compared to controls, mice treated with 17ß-estradiol had less neuronal injury, improved delirium-like behaviors, and less plasma and frontal cortex IL-6. In vitro studies further showed that 17ß-estradiol may also directly mediate neuronal protection, suggesting pleiotropic mechanisms of 17ß-estradiol-mediated neuroprotection. In summary, we demonstrate a beneficial role for 17ß-estradiol in ameliorating acute UTI-induced structural and functional delirium-like phenotypes. These findings provide pre-clinical justification for 17ß-estradiol as a therapeutic target to ameliorate delirium following UTI.


Asunto(s)
Delirio , Infecciones Urinarias , Ratones , Femenino , Animales , Escherichia coli , Modelos Animales de Enfermedad , Interleucina-6 , Ratones Endogámicos C57BL , Estradiol/farmacología , Infecciones Urinarias/tratamiento farmacológico , Estrógenos/farmacología , Fenotipo , Delirio/tratamiento farmacológico
2.
Thyroid ; 32(7): 849-859, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35350867

RESUMEN

Background: Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor disability disorder that also manifests characteristic abnormal thyroid hormone (TH) levels. AHDS is caused by inactivating mutations in monocarboxylate transporter 8 (MCT8), a specific TH plasma membrane transporter widely expressed in the central nervous system (CNS). MCT8 mutations cause impaired transport of TH across brain barriers, leading to insufficient neural TH supply. There is currently no successful therapy for the neurological symptoms. Earlier work has shown that intravenous (IV), but not intracerebroventricular adeno-associated virus serotype 9 (AAV9) -based gene therapy given to newborn Mct8 knockout (Mct8-/y) male mice increased triiodothyronine (T3) brain content and partially rescued TH-dependent gene expression, suggesting a promising approach to treat this neurological disorder. Methods: The potential of IV delivery of AAV9 carrying human MCT8 was tested in the well-established Mct8-/y/Organic anion-transporting polypeptide 1c1 (Oatp1c1)-/ - double knockout (dKO) mouse model of AHDS, which, unlike Mct8-/y mice, displays both neurological and TH phenotype. Further, as the condition is usually diagnosed during childhood, treatment was given intravenously to P30 mice and psychomotor tests were carried out blindly at P120-P140 after which tissues were collected and analyzed. Results: Systemic IV delivery of AAV9-MCT8 at a juvenile stage led to improved locomotor and cognitive functions at P120-P140, which was accompanied by a near normalization of T3 content and an increased response of positively regulated TH-dependent gene expression in different brain regions examined (thalamus, hippocampus, and parietal cortex). The effects on serum TH concentrations and peripheral tissues were less pronounced, showing only improvement in the serum T3/reverse T3 (rT3) ratio and in liver deiodinase 1 expression. Conclusion: IV administration of AAV9, carrying the human MCT8, to juvenile dKO mice manifesting AHDS has long-term beneficial effects, predominantly on the CNS. This preclinical study indicates that this gene therapy has the potential to ameliorate the devastating neurological symptoms in patients with AHDS.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Transportadores de Ácidos Monocarboxílicos , Simportadores , Animales , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/terapia , Ratones , Transportadores de Ácidos Monocarboxílicos/administración & dosificación , Transportadores de Ácidos Monocarboxílicos/deficiencia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonía Muscular , Atrofia Muscular , Mutación , Serogrupo , Simportadores/administración & dosificación , Simportadores/deficiencia , Simportadores/genética , Simportadores/metabolismo , Triyodotironina/metabolismo
3.
Stem Cells ; 36(7): 1122-1131, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29656478

RESUMEN

Early dysfunction of cortical motor neurons may underlie the initiation of amyotrophic lateral sclerosis (ALS). As such, the cortex represents a critical area of ALS research and a promising therapeutic target. In the current study, human cortical-derived neural progenitor cells engineered to secrete glial cell line-derived neurotrophic factor (GDNF) were transplanted into the SOD1G93A ALS rat cortex, where they migrated, matured into astrocytes, and released GDNF. This protected motor neurons, delayed disease pathology and extended survival of the animals. These same cells injected into the cortex of cynomolgus macaques survived and showed robust GDNF expression without adverse effects. Together this data suggests that introducing cortical astrocytes releasing GDNF represents a novel promising approach to treating ALS. Stem Cells 2018;36:1122-1131.


Asunto(s)
Terapia Genética/métodos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Esclerosis Amiotrófica Lateral , Animales , Modelos Animales de Enfermedad , Neuronas Motoras , Ratas
4.
J Trauma Acute Care Surg ; 82(6): 1039-1048, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28520686

RESUMEN

INTRODUCTION: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease linked to repetitive head injuries. Chronic traumatic encephalopathy symptoms include changes in mood, behavior, cognition, and motor function; however, CTE is currently diagnosed only postmortem. Using a rat model of recurrent traumatic brain injury (TBI), we demonstrate rodent deficits that predict the severity of CTE-like brain pathology. METHODS: Bilateral, closed-skull, mild TBI was administered once per week to 35 wild-type rats; eight rats received two injuries (2×TBI), 27 rats received five injuries (5×TBI), and 13 rats were sham controls. To determine clinical correlates for CTE diagnosis, TBI rats were separated based on the severity of rotarod deficits and classified as "mild" or "severe" and further separated into "acute," "short," and "long" based on age at euthanasia (90, 144, and 235 days, respectively). Brain atrophy, phosphorylated tau, and inflammation were assessed. RESULTS: All eight 2×TBI cases had mild rotarod deficiency, 11 5×TBI cases had mild deficiency, and 16 cases had severe deficiency. In one cohort of rats, tested at approximately 235 days of age, balance, rearing, and grip strength were significantly worse in the severe group relative to both sham and mild groups. At the acute time period, cortical thinning, phosphorylated tau, and inflammation were not observed in either TBI group, whereas corpus callosum thinning was observed in both TBI groups. At later time points, atrophy, tau pathology, and inflammation were increased in mild and severe TBI groups in the cortex and corpus callosum, relative to sham controls. These injury effects were exacerbated over time in the severe TBI group in the corpus callosum. CONCLUSIONS: Our model of repeat mild TBI suggests that permanent deficits in specific motor function tests correlate with CTE-like brain pathology. Assessing balance and motor coordination over time may predict CTE diagnosis.


Asunto(s)
Conmoción Encefálica/complicaciones , Encefalopatía Traumática Crónica/diagnóstico , Animales , Atrofia , Encéfalo/patología , Conmoción Encefálica/patología , Encefalopatía Traumática Crónica/patología , Encefalopatía Traumática Crónica/fisiopatología , Cuerpo Calloso/patología , Modelos Animales de Enfermedad , Masculino , Destreza Motora , Fosforilación , Equilibrio Postural , Ratas , Ratas Sprague-Dawley , Proteínas tau/metabolismo
5.
J Trauma Acute Care Surg ; 81(6): 1070-1079, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27602892

RESUMEN

BACKGROUND: Concussion injury is the most common form of traumatic brain injury (TBI). How recurrent concussions alter long-term outcomes is poorly understood, especially as related to the development of neurodegenerative disease. We evaluated the functional and pathological consequences of repeated TBI over time in wild type (WT) rats as well as rats harboring the human SOD1 mutation ("SOD1"), a model of familial amyotrophic lateral sclerosis (ALS). METHODS: A total of 42 rats, 26 WT and 16 SOD1, were examined over a study period of 25 weeks (or endpoint). At postnatal day 60, 20 WT and 7 SOD1 rats were exposed to mild, bilateral TBI once per week for either 2 weeks (2×TBI) or 5 weeks (5×TBI) using a controlled cortical impact device. Six WT and nine SOD1 rats underwent sham injury with anesthesia alone. Twenty WT rats were euthanized at 12 weeks after first injury and six WT rats were euthanized at 25 weeks after first injury. SOD1 rats were euthanized when they reached ALS disease endpoint. Weekly body weights and behavioral assessments were performed. Tauopathy in brain tissue was analyzed using immunohistochemistry. RESULTS: 2XTBI injured rats initially demonstrated recovery of motor function but failed to recover to baseline within the 12-week study period. Relative to both 2XTBI and sham controls, 5XTBI rats demonstrated significant deficits that persisted over the 12-week period. SOD1 5XTBI rats reached a peak body weight earlier than sham SOD1 rats, indicating earlier onset of the ALS phenotype. Histologic examination of brain tissue revealed that, in contrast with sham controls, SOD1 and WT TBI rats demonstrated cortical and corpus collosum thinning and tauopathy, which increased over time. CONCLUSIONS: Unlike previous models of repeat brain injury, which demonstrate only transient deficits in motor function, our concussion model of repeat, mild, bilateral TBI induced long-lasting deficits in motor function, decreased cortical thickness, shrinkage of the corpus callosum, increased brain tauopathy, and earlier onset of ALS symptoms in SOD1 rats. This model may allow for a greater understanding of the complex relationship between TBI and neurodegenerative diseases and provides a potential method for testing novel therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Conmoción Encefálica/etiología , Tauopatías/etiología , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/psicología , Animales , Conmoción Encefálica/patología , Conmoción Encefálica/psicología , Modelos Animales de Enfermedad , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Recurrencia , Tauopatías/patología , Tauopatías/psicología
6.
Exp Neurol ; 280: 41-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27032721

RESUMEN

Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population.


Asunto(s)
Envejecimiento/fisiología , Astrocitos/fisiología , Diferenciación Celular/fisiología , Neuronas Motoras/fisiología , Trastornos del Movimiento/cirugía , Células-Madre Neurales/fisiología , Factores de Edad , Animales , Peso Corporal/fisiología , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Feto/citología , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Masculino , Trastornos del Movimiento/patología , Trastornos del Movimiento/fisiopatología , Fuerza Muscular/fisiología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/trasplante , Unión Neuromuscular/fisiología , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología , Médula Espinal/trasplante
7.
Behav Pharmacol ; 22(3): 222-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21522053

RESUMEN

Acamprosate is used in the treatment of alcoholism; however, there is little information on its effects on nicotine addiction. The objective of this study was to determine whether acamprosate inhibits cue-induced relapse to nicotine self-administration in the rat. Rats were trained to press a lever to obtain intravenous infusions of nicotine (0.03 mg/kg/infusion) that were associated with the illumination of a cue light. After 29 days of nicotine self-administration sessions, extinction sessions were run during which responses on the active lever did not result in the infusion of nicotine or the illumination of the cue light. After 14 days of extinction sessions the rats received twice-daily injections of saline or acamprosate (50, 100, or 200 mg/kg/intraperitoneally). Seven days later the response to the previously conditioned cue was tested, but only saline infusions were delivered. Pretreatment with all doses of acamprosate reduced responding to a cue previously associated with nicotine. The lowest dose of acamprosate (50 mg/kg) reduced responding for the cue previously associated with nicotine infusions, but had no effect on food-rewarded behavior. These results show that acamprosate reduced cue-induced nicotine-seeking behavior and suggest that acamprosate might be efficacious in treating nicotine addiction in humans.


Asunto(s)
Señales (Psicología) , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Nicotina/administración & dosificación , Taurina/análogos & derivados , Acamprosato , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiología , Autoadministración , Taurina/farmacología
8.
Neuroscientist ; 15(5): 450-63, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19826169

RESUMEN

Neurons in sensory ganglia are surrounded by satellite glial cells (SGCs) that perform similar functions to the glia found in the CNS. When primary sensory neurons are injured, the surrounding SGCs undergo characteristic changes. There is good evidence that the SGCs are not just bystanders to the injury but play an active role in the initiation and maintenance of neuronal changes that underlie neuropathic pain. In this article the authors review the literature on the relationship between SGCs and nociception and present evidence that changes in SGC potassium ion buffering capacity and glutamate recycling can lead to neuropathic pain-like behavior in animal models. The role that SGCs play in the immune responses to injury is also considered. We propose the term gliopathic pain to describe those conditions in which central or peripheral glia are thought to be the principal generators of principal pain generators.


Asunto(s)
Ganglios Sensoriales/fisiopatología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Células Satélites Perineuronales/fisiología , Células Receptoras Sensoriales/fisiología , Adenosina Trifosfato/metabolismo , Animales , Comunicación Celular/fisiología , Proliferación Celular , Ganglios Sensoriales/citología , Ganglios Sensoriales/metabolismo , Ácido Glutámico/metabolismo , Humanos , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Potasio/metabolismo , Células Satélites Perineuronales/citología , Células Satélites Perineuronales/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
9.
Mol Pain ; 5: 42, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19656360

RESUMEN

BACKGROUND: Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. RESULTS: Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. CONCLUSION: Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya.


Asunto(s)
Adenoviridae/genética , Dolor Facial/terapia , Terapia Genética , Vectores Genéticos/genética , Glutamato Descarboxilasa/fisiología , Ganglio del Trigémino/metabolismo , Analgesia/métodos , Animales , Pollos , Glutamato Descarboxilasa/genética , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
10.
Pain ; 120(1-2): 188-201, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16360279

RESUMEN

Despite the widespread use of radiotherapy to treat painful bone metastases, the mechanism underlying the analgesic effect of low dose ionizing radiation is unknown. Bone cancer pain is mostly associated with an inflammatory response dominated by local activation of osteoclasts and by astrogliosis in the spinal cord. We determined the effects of a 6 Gy irradiation given focally on osteolytic sarcoma cells inoculated in humeri of mice. Pain behavior was assessed using the rota-rod and the grip force test. Seven days post-irradiation (day 17 post-tumor implantation) the performance of mice markedly improved on the rotarod (non-irradiated, 67+/-16s vs irradiated, 223 +/- 22 s; P = 0.0005), and the grip force test (non-irradiated, 34 +/- 4 g vs irradiated, 55 +/- 2 g; P = 0.001). This improvement was similar to the analgesia achieved with 30 mg/kg of the cyclooxygenase (COX) inhibitor ketorolac (Rota-rod, 67 +/- 16 s vs 178 +/- 35 s; P = 0.01: grip force test, 34 +/- 4 g, vs 60 +/- 5 g; P = 0.003). Following irradiation, the tumor mass and the number of osteoclasts did not decrease while the expression of two pro-inflammatory cytokines (monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-alpha) increased. Tumor irradiation led to clear differences in the spinal cord. These include a decrease in glial activity (astrocytes and microglial cells) as well as pain mediators such as dynorphin, COX-2 and chemotactic cytokine receptor (CCR2). We conclude that the analgesic effect of low dose irradiation of bone cancer is associated with the alteration of nociceptive transmission in the central nervous system.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Óseas/radioterapia , Citocinas/metabolismo , Neurotransmisores/metabolismo , Dolor/metabolismo , Dolor/radioterapia , Médula Espinal/metabolismo , Analgesia/métodos , Analgésicos Opioides/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Conducta Animal/efectos de los fármacos , Conducta Animal/efectos de la radiación , Neoplasias Óseas/complicaciones , Neoplasias Óseas/tratamiento farmacológico , Quimioterapia Adyuvante , Modelos Animales de Enfermedad , Combinación de Medicamentos , Femenino , Ketorolaco/administración & dosificación , Ratones , Ratones Endogámicos C3H , Morfina/administración & dosificación , Dolor/tratamiento farmacológico , Dolor/etiología , Dosificación Radioterapéutica , Médula Espinal/efectos de la radiación , Resultado del Tratamiento
11.
Oncogene ; 22(54): 8645-52, 2003 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-14647458

RESUMEN

Ionizing radiations (IR) exposure leads to damage on several cellular targets. How signals from different targets are integrated to determine the cell fate remains a controversial issue. Understanding the pathway(s) responsible(s) for the cell killing effect of the IR exposure is of prime importance in light of using radiations as anticancer agent or as diagnostic tool. In this study, we have established that IR-induced cell damage initiates two independent signaling pathways that lead to a biphasic intracellular ceramide increase. A transitory increase of ceramide is observed within minutes after IR exposure as a consequence of DNA damage-independent acid sphingomyelinase activation. Several hours after irradiation, a second wave of ceramide accumulation is observed depending on the DNA damage-dependent activation of ceramide synthase, which requires a signaling pathway involving ATM. Importantly, we have demonstrated that the late ceramide accumulation is also dependent on the first one and is rate limiting for the apoptotic process induced by IR. In conclusion, our observations suggest that ceramide is a major determinant of the IR-induced apoptotic process at the cross-point of different signal transduction pathways.


Asunto(s)
Apoptosis/efectos de la radiación , Ceramidas/fisiología , Transducción de Señal/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Caspasas/fisiología , Proteínas de Ciclo Celular , Línea Celular , Daño del ADN , Proteínas de Unión al ADN , Humanos , Enfermedades de Niemann-Pick/genética , Oxidorreductasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA