Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Oncol ; 18(3): 606-619, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158740

RESUMEN

Molecular subtyping is essential to infer tumor aggressiveness and predict prognosis. In practice, tumor profiling requires in-depth knowledge of bioinformatics tools involved in the processing and analysis of the generated data. Additionally, data incompatibility (e.g., microarray versus RNA sequencing data) and technical and uncharacterized biological variance between training and test data can pose challenges in classifying individual samples. In this article, we provide a roadmap for implementing bioinformatics frameworks for molecular profiling of human cancers in a clinical diagnostic setting. We describe a framework for integrating several methods for quality control, normalization, batch correction, classification and reporting, and develop a use case of the framework in breast cancer.


Asunto(s)
Neoplasias de la Mama , Perfilación de la Expresión Génica , Humanos , Femenino , Perfilación de la Expresión Génica/métodos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , ARN , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica
2.
J Anat ; 243(1): 23-38, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36794762

RESUMEN

Outer radial glial cells (oRGs) give rise to neurons and glial cells and contribute to cell migration and expansion in developing neocortex. HOPX has been described as a marker of oRGs and possible actor in glioblastomas. Recent years' evidence points to spatiotemporal differences in brain development which may have implications for the classification of cell types in the central nervous system and understanding of a range of neurological diseases. Using the Human Embryonic/Fetal Biobank, Institute of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark, HOPX and BLBP immunoexpression was investigated in developing frontal, parietal, temporal and occipital human neocortex, other cortical areas and brain stem regions to interrogate oRG and HOPX regional heterogeneity. Furthermore, usage of high-plex spatial profiling (Nanostring GeoMx® DSP) was tested on the same material. HOPX marked oRGs in several human developing brain regions as well as cells in known gliogenic areas but did not completely overlap with BLBP or GFAP. Interestingly, limbic structures (e.g. olfactory bulb, indusium griseum, entorhinal cortex, fimbria) showed more intense HOPX immunoreactivity than adjacent neocortex and in cerebellum and brain stem, HOPX and BLBP seemed to stain different cell populations in cerebellar cortex and corpus pontobulbare. DSP screening of corresponding regions indicated differences in cell type composition, vessel density and presence of apolipoproteins within and across regions and thereby confirming the importance of acknowledging time and place in developmental neuroscience.


Asunto(s)
Neuroglía , Neuronas , Humanos , Neuronas/metabolismo , Neuroglía/metabolismo , Encéfalo , Neurogénesis , Sistema Nervioso Central
3.
Neuro Oncol ; 25(2): 248-260, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35608632

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a highly lethal malignancy for which neoangiogenesis serves as a defining hallmark. The anti-VEGF antibody, bevacizumab, has been approved for the treatment of recurrent GBM, but resistance is universal. METHODS: We analyzed expression data of GBM patients treated with bevacizumab to discover potential resistance mechanisms. Patient-derived xenografts (PDXs) and cultures were interrogated for effects of phosphofructokinase-1, muscle isoform (PFKM) loss on tumor cell motility, migration, and invasion through genetic and pharmacologic targeting. RESULTS: We identified PFKM as a driver of bevacizumab resistance. PFKM functions dichotomize based on subcellular location: cytosolic PFKM interacted with KIF11, a tubular motor protein, to promote tumor invasion, whereas nuclear PFKM safeguarded genomic stability of tumor cells through interaction with NBS1. Leveraging differential transcriptional profiling, bupivacaine phenocopied genetic targeting of PFKM, and enhanced efficacy of bevacizumab in preclinical GBM models in vivo. CONCLUSION: PFKM drives novel molecular pathways in GBM, offering a translational path to a novel therapeutic paradigm.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Fosfofructoquinasa-1 , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
4.
Immunother Adv ; 2(1): ltac009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35919495

RESUMEN

The development of novel chimeric antigen receptor (CAR) cell therapies is rapidly growing, with 299 new agents being reported and 109 new clinical trials initiated so far this year. One critical lesson from approved CD19-specific CAR therapies is that target isoform switching has been shown to cause tumour relapse, but little is known about the isoforms of CAR targets in solid cancers. Here we assess the protein isoform landscape and identify both the challenges and opportunities protein isoform switching present as CAR therapy is applied to solid cancers.

5.
Cell Rep ; 39(6): 110793, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545054

RESUMEN

Ribosomopathies constitute a range of disorders associated with defective protein synthesis mainly affecting hematopoietic stem cells (HSCs) and erythroid development. Here, we demonstrate that deletion of poly-pyrimidine-tract-binding protein 1 (PTBP1) in the hematopoietic compartment leads to the development of a ribosomopathy-like condition. Specifically, loss of PTBP1 is associated with decreases in HSC self-renewal, erythroid differentiation, and protein synthesis. Consistent with its function as a splicing regulator, PTBP1 deficiency results in splicing defects in hundreds of genes, and we demonstrate that the up-regulation of a specific isoform of CDC42 partly mimics the protein-synthesis defect associated with loss of PTBP1. Furthermore, PTBP1 deficiency is associated with a marked defect in ribosome biogenesis and a selective reduction in the translation of mRNAs encoding ribosomal proteins. Collectively, this work identifies PTBP1 as a key integrator of ribosomal functions and highlights the broad functional repertoire of RNA-binding proteins.


Asunto(s)
Células Madre Hematopoyéticas , Ribosomas , Eritrocitos/metabolismo , Eritropoyesis , Células Madre Hematopoyéticas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
6.
Neurooncol Adv ; 3(1): vdab072, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34286278

RESUMEN

BACKGROUND: CNS immune privilege has been challenged in recent years. Glioblastoma (GBM) immune dysfunction includes complex interactions with the immune system outside the CNS. The aim of this study was to determine diagnostic and prognostic potential of immune-related proteins in plasma in GBM and interrogate biomarker presence in the brain tumor microenvironment (TME). METHODS: One hundred and fifty-eight patients with glioma WHO grade II-IV were included. Plasma collected at surgery was screened for 92 proteins using proximity extension assay technology and related to clinical outcome. Secretion and expression of candidate prognostic biomarkers were subsequently analyzed in 8 GBM cell lines and public RNAseq data. RESULTS: Plasma levels of 20 out of 92 screened proteins were significantly different in patients with GBM compared to patients with astrocytoma WHO grade II-III. High plasma interleukin-8 (IL-8) (hazard ratio [HR] = 1.52; P = .0077) and low CD244 (HR = 0.36; P = .0004) were associated with short progression-free survival and high plasma IL-8 (HR = 1.40; P = .044) and low ICOS ligand (ICOSLG) (HR = 0.17; P = .0003) were associated with short overall survival (OS) in newly diagnosed patients with GBM. A similar trend was found for ICOSLG (HR = 0.34; P = .053) in recurrent GBM. IL-8 was mostly secreted and expressed by mesenchymal GBM cell lines and expressed by vascular cells and immune cells in the TME. This was also the case for ICOSLG, although less consistent, and with additional expression in tumor-associated oligodendrocytes. CONCLUSIONS: High plasma IL-8 and low ICOSLG at surgery are associated with short OS in newly diagnosed GBM. Source of plasma ICOSLG may be found outside the TME.

7.
Cell Cycle ; 20(7): 702-715, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33779510

RESUMEN

Glioblastomas (GBM) are heterogeneous highly vascular brain tumors exploiting the unique microenvironment in the brain to resist treatment and anti-tumor responses. Anti-angiogenic agents, immunotherapy, and targeted therapy have been studied extensively in GBM patients over a number of decades with minimal success. Despite maximal efforts, prognosis remains dismal with an overall survival of approximately 15 months.Bevacizumab, a humanized anti-vascular endothelial growth factor (VEGF) antibody, underwent accelerated approval by the U.S. Food and Drug Administration in 2009 for the treatment of recurrent GBM based on promising preclinical and early clinical studies. Unfortunately, subsequent clinical trials did not find overall survival benefit. Pursuing pleiotropic targets and leaning toward multitarget strategies may be a key to more effective therapeutic intervention in GBM, but preclinical evaluation requires careful consideration of model choices. In this study, we discuss bevacizumab resistance, dual targeting of pro-angiogenic modulators VEGF and YKL-40 in the context of brain tumor microenvironment, and how model choice impacts study conclusions and its translational significance.


Asunto(s)
Bevacizumab/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Proteína 1 Similar a Quitinasa-3/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Neoplasias Encefálicas/metabolismo , Proteína 1 Similar a Quitinasa-3/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
8.
F1000Res ; 10: 374, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36762203

RESUMEN

Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for differential transcript usage (DTU) analysis either lack in performance, cannot account for complex experimental designs or do not scale to massive single-cell transcriptome sequencing (scRNA-seq) datasets. We introduce satuRn, a fast and flexible quasi-binomial generalized linear modelling framework that is on par with the best performing DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, addressing complex experimental designs, and scaling to scRNA-seq applications.

9.
Cancer Discov ; 11(2): 480-499, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023892

RESUMEN

Glioblastoma is a universally lethal cancer driven by glioblastoma stem cells (GSC). Here, we interrogated N 6-methyladenosine (m6A) mRNA modifications in GSCs by methyl RNA immunoprecipitation followed by sequencing and transcriptome analysis, finding transcripts marked by m6A often upregulated compared with normal neural stem cells (NSC). Interrogating m6A regulators, GSCs displayed preferential expression, as well as in vitro and in vivo dependency, of the m6A reader YTHDF2, in contrast to NSCs. Although YTHDF2 has been reported to destabilize mRNAs, YTHDF2 stabilized MYC and VEGFA transcripts in GSCs in an m6A-dependent manner. We identified IGFBP3 as a downstream effector of the YTHDF2-MYC axis in GSCs. The IGF1/IGF1R inhibitor linsitinib preferentially targeted YTHDF2-expressing cells, inhibiting GSC viability without affecting NSCs and impairing in vivo glioblastoma growth. Thus, YTHDF2 links RNA epitranscriptomic modifications and GSC growth, laying the foundation for the YTHDF2-MYC-IGFBP3 axis as a specific and novel therapeutic target in glioblastoma. SIGNIFICANCE: Epitranscriptomics promotes cellular heterogeneity in cancer. RNA m6A landscapes of cancer and NSCs identified cell type-specific dependencies and therapeutic vulnerabilities. The m6A reader YTHDF2 stabilized MYC mRNA specifically in cancer stem cells. Given the challenge of targeting MYC, YTHDF2 presents a therapeutic target to perturb MYC signaling in glioblastoma.This article is highlighted in the In This Issue feature, p. 211.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Células Madre Neoplásicas/metabolismo , Proteínas de Unión al ARN/genética , Humanos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
10.
Sci Adv ; 5(7): eaaw4304, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31309149

RESUMEN

The key myeloid transcription factor (TF), CEBPA, is frequently mutated in acute myeloid leukemia (AML), but the direct molecular effects of this leukemic driver mutation remain elusive. To investigate CEBPA mutant AML, we performed microscale, in vivo chromatin immunoprecipitation sequencing and identified a set of aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. Comparing gene expression changes in human CEBPA mutant AML and the corresponding Cebpa Lp30 mouse model, we identified Nt5e, encoding CD73, as a cross-species AML gene with an upstream leukemic enhancer physically and functionally linked to the gene. Increased expression of CD73, mediated by the CEBPA-p30 isoform, sustained leukemic growth via the CD73/A2AR axis. Notably, targeting of this pathway enhanced survival of AML-transplanted mice. Our data thus indicate a first-in-class link between a cancer driver mutation in a TF and a druggable, direct transcriptional target.


Asunto(s)
5'-Nucleotidasa/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Mutación , Animales , Sitios de Unión , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Proteínas Ligadas a GPI/genética , Perfilación de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Ratones , Motivos de Nucleótidos , Pronóstico , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética
11.
Bioinformatics ; 35(21): 4469-4471, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30989184

RESUMEN

SUMMARY: Alternative splicing is an important mechanism involved in health and disease. Recent work highlights the importance of investigating genome-wide changes in splicing patterns and the subsequent functional consequences. Current computational methods only support such analysis on a gene-by-gene basis. Therefore, we extended IsoformSwitchAnalyzeR R library to enable analysis of genome-wide changes in specific types of alternative splicing and predicted functional consequences of the resulting isoform switches. As a case study, we analyzed RNA-seq data from The Cancer Genome Atlas and found systematic changes in alternative splicing and the consequences of the associated isoform switches. AVAILABILITY AND IMPLEMENTATION: Windows, Linux and Mac OS: http://bioconductor.org/packages/IsoformSwitchAnalyzeR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Empalme Alternativo , Programas Informáticos , Genoma , Isoformas de Proteínas , Empalme del ARN , Análisis de Secuencia de ARN
12.
Nat Commun ; 9(1): 1661, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695774

RESUMEN

Inflammatory bowel disease (IBD) is a chronic intestinal disorder, with two main types: Crohn's disease (CD) and ulcerative colitis (UC), whose molecular pathology is not well understood. The majority of IBD-associated SNPs are located in non-coding regions and are hard to characterize since regulatory regions in IBD are not known. Here we profile transcription start sites (TSSs) and enhancers in the descending colon of 94 IBD patients and controls. IBD-upregulated promoters and enhancers are highly enriched for IBD-associated SNPs and are bound by the same transcription factors. IBD-specific TSSs are associated to genes with roles in both inflammatory cascades and gut epithelia while TSSs distinguishing UC and CD are associated to gut epithelia functions. We find that as few as 35 TSSs can distinguish active CD, UC, and controls with 85% accuracy in an independent cohort. Our data constitute a foundation for understanding the molecular pathology, gene regulation, and genetics of IBD.


Asunto(s)
Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Adulto , Biopsia , Estudios de Casos y Controles , Estudios de Cohortes , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/patología , Colon/diagnóstico por imagen , Colon/patología , Colonoscopía , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/patología , Femenino , Humanos , Mucosa Intestinal/diagnóstico por imagen , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN , Regulación hacia Arriba
13.
Mol Oncol ; 12(3): 406-420, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29360266

RESUMEN

Glioblastoma (GBM) ranks among the most lethal cancers, with current therapies offering only palliation. Inter- and intrapatient heterogeneity is a hallmark of GBM, with epigenetically distinct cancer stem-like cells (CSCs) at the apex. Targeting GSCs remains a challenging task because of their unique biology, resemblance to normal neural stem/progenitor cells, and resistance to standard cytotoxic therapy. Here, we find that the chromatin regulator, JmjC domain histone H3K36me2/me1 demethylase KDM2B, is highly expressed in glioblastoma surgical specimens compared to normal brain. Targeting KDM2B function genetically or pharmacologically impaired the survival of patient-derived primary glioblastoma cells through the induction of DNA damage and apoptosis, sensitizing them to chemotherapy. KDM2B loss decreased the GSC pool, which was potentiated by coadministration of chemotherapy. Collectively, our results demonstrate KDM2B is crucial for glioblastoma maintenance, with inhibition causing loss of GSC survival, genomic stability, and chemoresistance.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos , Proteínas F-Box/metabolismo , Glioblastoma/tratamiento farmacológico , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células Madre Neoplásicas/metabolismo , Apoptosis/efectos de los fármacos , Astrocitos/metabolismo , Neoplasias Encefálicas/patología , Línea Celular , Daño del ADN/efectos de los fármacos , Etopósido/administración & dosificación , Proteínas F-Box/genética , Glioblastoma/patología , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Lomustina/administración & dosificación , Lisina/metabolismo , Cultivo Primario de Células
14.
Mol Cancer Res ; 15(9): 1206-1220, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28584021

RESUMEN

Alternative usage of transcript isoforms from the same gene has been hypothesized as an important feature in cancers. However, differential usage of gene transcripts between conditions (isoform switching) has not been comprehensively characterized in and across cancer types. To this end, we developed methods for identification and visualization of isoform switches with predicted functional consequences. Using these methods, we characterized isoform switching in RNA-seq data from >5,500 cancer patients covering 12 solid cancer types. Isoform switches with potential functional consequences were common, affecting approximately 19% of multiple transcript genes. Among these, isoform switches leading to loss of DNA sequence encoding protein domains were more frequent than expected, particularly in pancancer switches. We identified several isoform switches as powerful biomarkers: 31 switches were highly predictive of patient survival independent of cancer types. Our data constitute an important resource for cancer researchers, available through interactive web tools. Moreover, our methods, available as an R package, enable systematic analysis of isoform switches from other RNA-seq datasets.Implications: This study indicates that isoform switches with predicted functional consequences are common and important in dysfunctional cells, which in turn means that gene expression should be analyzed at the isoform level. Visual Overview: http://mcr.aacrjournals.org/content/molcanres/15/9/1206/F1.large.jpg.Mol Cancer Res; 15(9); 1206-20. ©2017 AACR.


Asunto(s)
Secuencia de Bases/genética , Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Isoformas de Proteínas/genética , Humanos
15.
BMC Cancer ; 17(1): 278, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28420326

RESUMEN

BACKGROUND: Bevacizumab combined with chemotherapy produces clinical durable response in 25-30% of recurrent glioblastoma patients. This group of patients has shown improved survival and quality of life. The aim of this study was to investigate changes in gene expression associated with response and resistance to bevacizumab combination therapy. METHODS: Recurrent glioblastoma patients who had biomarker-accessible tumor tissue surgically removed both before bevacizumab treatment and at time of progression were included. Patients were grouped into responders (n = 7) and non-responders (n = 14). Gene expression profiling of formalin-fixed paraffin-embedded tumor tissue was performed using RNA-sequencing. RESULTS: By comparing pretreatment samples of responders with those of non-responders no significant difference was observed. In a paired comparison analysis of pre- and posttreatment samples of non-responders 1 gene was significantly differentially expressed. In responders, this approach revealed 256 significantly differentially expressed genes (72 down- and 184 up-regulated genes at the time of progression). Genes differentially expressed in responders revealed a shift towards a more proneural and less mesenchymal phenotype at the time of progression. CONCLUSIONS: Bevacizumab combination treatment demonstrated a significant impact on the transcriptional changes in responders; but only minimal changes in non-responders. This suggests that non-responding glioblastomas progress chaotically without following distinct gene expression changes while responding tumors adaptively respond or progress by means of the same transcriptional changes. In conclusion, we hypothesize that the identified gene expression changes of responding tumors are associated to bevacizumab response or resistance mechanisms.


Asunto(s)
Antineoplásicos/uso terapéutico , Bevacizumab/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Transcripción Genética/efectos de los fármacos , Adulto , Anciano , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA