Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Transplant ; 3: 1307946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993767

RESUMEN

Introduction: Biovigilance (BV) systems aim to improve the quality and safety of tissues and organs for transplantation. This study describes the Catalan BV system and analyzes its utility. Methods: It is a retrospective analysis of notifications on serious adverse events (SAEs) and reactions (SARs) since the implementation of the BV system (2008 for tissues and 2016 for organs) until 2020. Variables are presented to describe the most common critical steps of the pathway and complications associated with the quality and safety of tissues and organs. Results: A total of 154 and 125 notifications were reported to the Tissue and the Organ BV systems, respectively. Most SAEs were related to unexpected donor diseases and implemented actions were assured on those deemed preventable. Regarding SARs, donor-transmitted infections and malignancies (only organs) were the most common, followed by graft failure (tissues) and process-related (organs). The incidence of SAEs and SARs related to tissue was 3.44‰ and 0.22‰, respectively. The corresponding figures for organs were 31.48‰ and 8.8‰, respectively. Discussion: The analysis of the notifications to the Catalan BV systems has provided useful information about existing risks associated with the quality and safety of tissues and organs, and enabled the implementation of actions targeted to diminish risks and mitigate damage.

2.
J Clin Med ; 13(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892889

RESUMEN

Background-This review provides a comprehensive overview of rare anemias, emphasizing their hereditary and acquired causes, diagnostic advancements, and evolving treatment strategies. It outlines the significance of rare anemias within public health, historical challenges in recognition and treatment, and the role of European initiatives like ENERCA and EuroBloodNet in advancing care. Content-This document discusses diagnostic technologies like next-generation sequencing and the impact of artificial intelligence, alongside the promising avenues of gene therapy, targeted drug treatments, and stem cell transplantation. It underscores the importance of a patient-tailored approach, advances in diagnostic tools, and the necessity for continued research, patient advocacy, and international collaboration to improve outcomes for individuals with rare anemias.

3.
Front Physiol ; 12: 761411, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744796

RESUMEN

The purpose of this work is to develop a hematocrit-independent method for the detection of beta-thalassemia trait (ß-TT) and iron deficiency anemia (IDA), through the rheological characterization of whole blood samples from different donors. The results obtained herein are the basis for the development of a front microrheometry point-of-care device for the diagnosis and clinical follow-up of ß-TT patients suffering hematological diseases and alterations in the morphology of the red blood cell (RBC). The viscosity is calculated as a function of the mean front velocity by detecting the sample fluid-air interface advancing through a microfluidic channel. Different viscosity curves are obtained for healthy donors, ß-TT and IDA samples. A mathematical model is introduced to compare samples of distinct hematocrit, classifying the viscosity curve patterns with respect to the health condition of blood. The viscosity of the fluid at certain shear rate values varies depending on several RBC factors such as shape and size, hemoglobin (Hb) content, membrane rigidity and hematocrit concentration. Blood and plasma from healthy donors are used as reference. To validate their potential clinical value as a diagnostic tool, the viscosity results are compared to those obtained by the gold-standard method for RBC deformability evaluation, the Laser-Optical Rotational Red Cell Analyzer (LoRRCA).

5.
Front Physiol ; 10: 386, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31040790

RESUMEN

Congenital haemolytic anaemias are inherited disorders caused by red blood cell membrane and cytoskeletal protein defects, deviant hemoglobin synthesis and metabolic enzyme deficiencies. In many cases, although the causing mutation might be known, the pathophysiology and the connection between the particular mutation and the symptoms of the disease are not completely understood. Thus effective treatment is lagging behind. As in many cases abnormal red blood cell cation content and cation leaks go along with the disease, by direct electrophysiological measurements of the general conductance of red blood cells, we aimed to assess if changes in the membrane conductance could be a possible cause. We recorded whole-cell currents from 29 patients with different types of congenital haemolytic anaemias: 14 with hereditary spherocytosis due to mutations in α-spectrin, ß-spectrin, ankyrin and band 3 protein; 6 patients with hereditary xerocytosis due to mutations in Piezo1; 6 patients with enzymatic disorders (3 patients with glucose-6-phosphate dehydrogenase deficiency, 1 patient with pyruvate kinase deficiency, 1 patient with glutamate-cysteine ligase deficiency and 1 patient with glutathione reductase deficiency), 1 patient with ß-thalassemia and 2 patients, carriers of several mutations and a complex genotype. While the patients with ß-thalassemia and metabolic enzyme deficiencies showed no changes in their membrane conductance, the patients with hereditary spherocytosis and hereditary xerocytosis showed largely variable results depending on the underlying mutation.

6.
Clin Chem Lab Med ; 55(2): 189-194, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27506603

RESUMEN

This paper, prepared by the EFLM Task and Finish Group on Allocation of laboratory tests to different models for performance specifications (TFG-DM), is dealing with criteria for allocating measurands to the different models for analytical performance specifications (APS) recognized in the 1st EFLM Strategic Conference Consensus Statement. Model 1, based on the effect of APS on clinical outcome, is the model of choice for measurands that have a central role in the decision-making of a specific disease or clinical situation and where cut-off/decision limits are established for either diagnosing, screening or monitoring. Total cholesterol, glucose, HbA1c, serum albumin and cardiac troponins represent practical examples. Model 2 is based on components of biological variation and should be applied to measurands that do not have a central role in a specific disease or clinical situation, but where the concentration of the measurand is in a steady state. This is best achieved for measurands under strict homeostatic control in order to preserve their concentrations in the body fluid of interest, but it can also be applied to other measurands that are in a steady state in biological fluids. In this case, it is expected that the "noise" produced by the measurement procedure will not significantly alter the signal provided by the concentration of the measurand. This model especially applies to electrolytes and minerals in blood plasma (sodium, potassium, chloride, bicarbonate, calcium, magnesium, inorganic phosphate) and to creatinine, cystatin C, uric acid and total protein in plasma. Model 3, based on state-of-the-art of the measurement, should be used for all the measurands that cannot be included in models 1 or 2.


Asunto(s)
Análisis Químico de la Sangre , Técnicas de Laboratorio Clínico/métodos , Técnicas de Laboratorio Clínico/normas , Colesterol/sangre , Creatinina/sangre , Cistatina C/sangre , Electrólitos/sangre , Glucosa/análisis , Hemoglobina Glucada/análisis , Humanos , Minerales/sangre , Albúmina Sérica/análisis , Troponina/sangre , Ácido Úrico/sangre
7.
Mol Ther ; 24(7): 1187-98, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27138040

RESUMEN

Pyruvate kinase deficiency (PKD) is a monogenic metabolic disease caused by mutations in the PKLR gene that leads to hemolytic anemia of variable symptomatology and that can be fatal during the neonatal period. PKD recessive inheritance trait and its curative treatment by allogeneic bone marrow transplantation provide an ideal scenario for developing gene therapy approaches. Here, we provide a preclinical gene therapy for PKD based on a lentiviral vector harboring the hPGK eukaryotic promoter that drives the expression of the PKLR cDNA. This therapeutic vector was used to transduce mouse PKD hematopoietic stem cells (HSCs) that were subsequently transplanted into myeloablated PKD mice. Ectopic RPK expression normalized the erythroid compartment correcting the hematological phenotype and reverting organ pathology. Metabolomic studies demonstrated functional correction of the glycolytic pathway in RBCs derived from genetically corrected PKD HSCs, with no metabolic disturbances in leukocytes. The analysis of the lentiviral insertion sites in the genome of transplanted hematopoietic cells demonstrated no evidence of genotoxicity in any of the transplanted animals. Overall, our results underscore the therapeutic potential of the hPGK-coRPK lentiviral vector and provide high expectations toward the gene therapy of PKD and other erythroid metabolic genetic disorders.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/genética , Anemia Hemolítica Congénita no Esferocítica/terapia , Terapia Genética , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato/genética , Errores Innatos del Metabolismo del Piruvato/terapia , Anemia Hemolítica Congénita no Esferocítica/metabolismo , Animales , Células Sanguíneas/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Eritrocitos/citología , Eritrocitos/metabolismo , Eritropoyesis , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/genética , Glucólisis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Lentivirus/genética , Redes y Vías Metabólicas , Metaboloma , Metabolómica , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Errores Innatos del Metabolismo del Piruvato/metabolismo , Transducción Genética
8.
Nephrol Dial Transplant ; 27(2): 537-41, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21785038

RESUMEN

BACKGROUND: Anaemia and microcytosis are common post kidney transplantation. The aim of this study was to evaluate the potential role of mammalian target of rapamycin (mTOR) inhibition in the development of anaemia and microcytosis in healthy animals and in human erythroid cultures in vitro. METHODS: Rats with normal kidney function were treated with sirolimus (n = 7) or vehicle (n = 8) for 15 weeks. Hemograms were determined thereafter. In the sirolimus withdrawal part of the study, rats received sirolimus (SRL) for 67 days (n = 4) 1 mg/kg three times per week or for 30 days (n = 4) and were observed until Day 120. Hemograms were performed regularly. Peripheral blood mononuclear cells from healthy controls (HC; n = 8), kidney transplant patients with sirolimus treatment with (SRL + MC; n = 8) or without microcytosis (SRL - MC; n = 8) were isolated and cultured in the absence or presence of SRL (5 ng/mL). RESULTS: SRL-treated animals had a reduced mean corpuscular volume (MCV) and elevated erythrocyte count compared with control animals after 15 weeks of treatment. This effect was evident as early as 4 weeks (MCV: 61.5 ± 1.8 versus 57 ± 1.7 fL; P = 0.0156; Red blood count 7.4 ± 0.3 × 10(9)/L versus 8.6 ± 0.5 × 10(9)/L; P = 0.0156) and was reversible 90 days after SRL withdrawal. SRL in the culture medium of erythroid cultures led to fewer colonies in cultures from HC as well as from kidney transplant patients (without SRL: 34.2 ± 11.4 versus with SRL: 27.5 ± 9.9 BFU-E-derived colonies P = 0.03), regardless if the cultures were derived from recipients with normocytic or with microcytic erythrocytes. The presence of tacrolimus in the culture medium had no influence on the number and size of colonies. CONCLUSION: mTOR inhibition induces microcytosis and polyglobulia, but not anaemia in healthy rats. This might be caused by growth inhibition of erythroid precursor cells.


Asunto(s)
Anemia/fisiopatología , Eritropoyesis/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Anemia/sangre , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Recuento de Eritrocitos , Índices de Eritrocitos , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/efectos de los fármacos , Eritropoyesis/fisiología , Enfermedades Hematológicas/sangre , Humanos , Inmunosupresores , Infusiones Parenterales , Trasplante de Riñón , Leucocitos Mononucleares/citología , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar , Valores de Referencia , Estadísticas no Paramétricas , Serina-Treonina Quinasas TOR/metabolismo
9.
Hum Mutat ; 27(11): 1159, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17041899

RESUMEN

Molecular characteristics of red blood cell (RBC) glucose phosphate isomerase (GPI) deficiency are described in two Spanish patients with chronic nonspherocytic hemolytic anemia. One patient, with residual GPI activity in RBCs of around 7% (GPI-Catalonia), is homozygous for the missense mutation c.1648A>G (p.Lys550Glu) in exon 18. The other patient, with residual activity in RBCs of around 20% (GPI-Barcelona), was found to be a compound heterozygote for two different missense mutations: c.341A>T (p.Asp113Val) in exon 4 and c.663T>G (p.Asn220Lys) in exon 7. Molecular modeling using the human crystal structure of GPI as a model was performed to determine how these mutations could affect enzyme structure and function.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/genética , Eritrocitos/enzimología , Glucosa-6-Fosfato Isomerasa/genética , Mutación Missense , Adolescente , Adulto , Cristalización , Análisis Mutacional de ADN , Dimerización , Femenino , Glucosa-6-Fosfato Isomerasa/química , Humanos , Modelos Moleculares , Relación Estructura-Actividad
10.
Biochim Biophys Acta ; 1740(3): 467-71, 2005 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15949716

RESUMEN

Homozygous glucose phosphate isomerase (GPI) deficiency is one of the most important genetic disorders responsible for chronic non-spherocytic hemolytic anemia (CNSHA), a red blood cell autosomal recessive genetic disorder which causes severe metabolic alterations. In this work, we studied a patient with CNSHA due to an 82% loss of GPI activity resulting from the homozygous missense replacement in cDNA position 1040G>A, which leads to substitution of the protein residue A346H mutation. The enzyme is present in a dimeric form necessary for normal activity; the A346H mutation causes a loss of GPI capability to dimerize, which renders the enzyme more susceptible to thermolability and produces significant changes in erythrocyte metabolism.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Anemia Hemolítica Congénita no Esferocítica/genética , Eritrocitos/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Modelos Moleculares , Mutación Missense/genética , Adolescente , Anemia Hemolítica Congénita no Esferocítica/metabolismo , ADN Complementario/genética , Electroforesis en Gel de Agar , Femenino , Humanos , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA