Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Immunol ; 15: 1392316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711516

RESUMEN

Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.


Asunto(s)
Inmunidad Adaptativa , Proteínas Bacterianas , Citocinas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/inmunología , Citocinas/metabolismo , Proteínas Bacterianas/inmunología , Lipoproteínas/inmunología , Lipoproteínas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Vacunas Neumococicas/inmunología , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/prevención & control , Macrófagos/inmunología , Macrófagos/metabolismo , Células Cultivadas
2.
Diabetologia ; 65(12): 2121-2131, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36028774

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to develop strategies that identify children from the general population who have late-stage presymptomatic type 1 diabetes and may, therefore, benefit from immune intervention. METHODS: We tested children from Bavaria, Germany, aged 1.75-10 years, enrolled in the Fr1da public health screening programme for islet autoantibodies (n=154,462). OGTT and HbA1c were assessed in children with multiple islet autoantibodies for diagnosis of presymptomatic stage 1 (normoglycaemia) or stage 2 (dysglycaemia) type 1 diabetes. Cox proportional hazards and penalised logistic regression of autoantibody, genetic, metabolic and demographic information were used to develop a progression likelihood score to identify children with stage 1 type 1 diabetes who progressed to stage 3 (clinical) type 1 diabetes within 2 years. RESULTS: Of 447 children with multiple islet autoantibodies, 364 (81.4%) were staged. Undiagnosed stage 3 type 1 diabetes, presymptomatic stage 2, and stage 1 type 1 diabetes were detected in 41 (0.027% of screened children), 30 (0.019%) and 293 (0.19%) children, respectively. The 2 year risk for progression to stage 3 type 1 diabetes was 48% (95% CI 34, 58) in children with stage 2 type 1 diabetes (annualised risk, 28%). HbA1c, islet antigen-2 autoantibody positivity and titre, and the 90 min OGTT value were predictors of progression in children with stage 1 type 1 diabetes. The derived progression likelihood score identified substages corresponding to ≤90th centile (stage 1a, n=258) and >90th centile (stage 1b, n=29; 0.019%) of stage 1 children with a 4.1% (95% CI 1.4, 6.7) and 46% (95% CI 21, 63) 2 year risk of progressing to stage 3 type 1 diabetes, respectively. CONCLUSIONS/INTERPRETATION: Public health screening for islet autoantibodies found 0.027% of children to have undiagnosed clinical type 1 diabetes and 0.038% to have undiagnosed presymptomatic stage 2 or stage 1b type 1 diabetes, with 50% risk to develop clinical type 1 diabetes within 2 years.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Niño , Humanos , Diabetes Mellitus Tipo 1/epidemiología , Islotes Pancreáticos/metabolismo , Salud Pública , Autoanticuerpos , Tamizaje Masivo , Progresión de la Enfermedad
3.
J Mol Biol ; 433(2): 166723, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33242497

RESUMEN

Nucleotides are important for RNA and DNA synthesis and, despite a de novo synthesis by bacteria, uptake systems are crucial. Streptococcus pneumoniae, a facultative human pathogen, produces a surface-exposed nucleoside-binding protein, PnrA, as part of an ABC transporter system. Here we demonstrate the binding affinity of PnrA to nucleosides adenosine, guanosine, cytidine, thymidine and uridine by microscale thermophoresis and indicate the consumption of adenosine and guanosine by 1H NMR spectroscopy. In a series of five crystal structures we revealed the PnrA structure and provide insights into how PnrA can bind purine and pyrimidine ribonucleosides but with preference for purine ribonucleosides. Crystal structures of PnrA:nucleoside complexes unveil a clear pattern of interactions in which both the N- and C- domains of PnrA contribute. The ribose moiety is strongly recognized through a conserved network of H-bond interactions, while plasticity in loop 27-36 is essential to bind purine- or pyrimidine-based nucleosides. Further, we deciphered the role of PnrA in pneumococcal fitness in infection experiments. Phagocytosis experiments did not show a clear difference in phagocytosis between PnrA-deficient and wild-type pneumococci. In the acute pneumonia infection model the deficiency of PnrA attenuated moderately virulence of the mutant, which is indicated by a delay in the development of severe lung infections. Importantly, we confirmed the loss of fitness in co-infections, where the wild-type out-competed the pnrA-mutant. In conclusion, we present the PnrA structure in complex with individual nucleosides and show that the consumption of adenosine and guanosine under infection conditions is required for virulence.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Streptococcus pneumoniae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Enlace de Hidrógeno , Cinética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nucleósidos/química , Nucleósidos/metabolismo , Fagocitosis , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/metabolismo , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/patología , Unión Proteica , Conformación Proteica , Streptococcus pneumoniae/inmunología , Relación Estructura-Actividad
4.
mSphere ; 3(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29769380

RESUMEN

Streptococcus pneumoniae two-component regulatory systems (TCS) enable adaptation and ensure its maintenance in host environments. This study deciphers the impact of TCS08 on pneumococcal gene expression and its role in metabolic and pathophysiological processes. Transcriptome analysis and real-time PCR demonstrated a regulatory effect of TCS08 on genes involved mainly in environmental information processing, intermediary metabolism, and colonization by S. pneumoniae D39 and TIGR4. Striking examples are genes for fatty acid biosynthesis, genes of the arginine deiminase system, and the psa operon encoding the manganese ABC transport system. In silico analysis confirmed that TCS08 is homologous to Staphylococcus aureus SaeRS, and a SaeR-like binding motif is displayed in the promoter region of pavB, the upstream gene of the tcs08 operon encoding a surface-exposed adhesin. Indeed, PavB is regulated by TCS08 as confirmed by immunoblotting and surface abundance assays. Similarly, pilus-1 of TIGR4 is regulated by TCS08. Finally, in vivo infections using the acute pneumonia and sepsis models showed a strain-dependent effect. Loss of function of HK08 or TCS08 attenuated D39 virulence in lung infections. The RR08 deficiency attenuated TIGR4 in pneumonia, while there was no effect on sepsis. In contrast, lack of HK08 procured a highly virulent TIGR4 phenotype in both pneumonia and sepsis infections. Taken together, these data indicate the importance of TCS08 in pneumococcal fitness to adapt to the milieu of the respiratory tract during colonization.IMPORTANCEStreptococcus pneumoniae interplays with its environment by using 13 two-component regulatory systems and one orphan response regulator. These systems are involved in the sensing of environmental signals, thereby modulating pneumococcal pathophysiology. This study aimed to understand the functional role of genes subject to control by the TCS08. The identified genes play a role in transport of compounds such as sugars or amino acids. In addition, the intermediary metabolism and colonization factors are modulated by TCS08. Thus, TCS08 regulates genes involved in maintaining pneumococcal physiology, transport capacity, and adhesive factors to enable optimal colonization, which represents a prerequisite for invasive pneumococcal disease.


Asunto(s)
Adaptación Fisiológica , Regulación Bacteriana de la Expresión Génica , Metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiología , Bacteriemia/microbiología , Proteínas Bacterianas/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Genes Reguladores , Neumonía Neumocócica/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA