Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biofilm ; 7: 100170, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38234712

RESUMEN

This study investigates the potential of using bacteriophages to control foodborne pathogen biofilms on stainless steel surfaces in the food industry. Biofilm-forming bacteria can attach to stainless steel surfaces, rendering them difficult to eradicate even after a thorough cleaning and sanitizing procedures. Bacteriophages have been proposed as a possible solution, as they can penetrate biofilms and destroy bacterial cells within, reducing the number of viable bacteria and preventing the growth and spread of biofilms. This systematic review and meta-analysis evaluates the potential of bacteriophages against different biofilm-forming foodborne bacteria, including Cronobacter sakazakii, Escherichia coli, Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa and Listeria monocytogenes. Bacteriophage treatment generally causes a significant average reduction of 38 % in biofilm formation of foodborne pathogens on stainless steel. Subgroup analyses revealed that phages are more efficient in long-duration treatment. Also, applying a cocktail of phages is 1.26-fold more effective than applying individual phages. Phages at concentrations exceeding 107 PFU/ml are significantly more efficacious in eradicating bacteria within a biofilm. The antibacterial phage activity decreases substantially by 3.54-fold when applied at 4 °C compared to temperatures above 25 °C. This analysis suggests that bacteriophages can be a promising solution for controlling biofilms in the food industry.

2.
Microbiol Spectr ; 11(6): e0290723, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37819122

RESUMEN

IMPORTANCE: As antimicrobial resistance becomes more prevalent, the application of (bacterio)phage therapy as an alternative treatment for difficult-to-treat infections is (re)gaining popularity. Over the past decade, numerous promising case reports and series have been published demonstrating the therapeutic potential of phage therapy. However, important questions remain regarding the optimal treatment protocol and, unlike for medicinal products, there are currently no predefined quality standards for the stability of phage preparations. Phage titers can be influenced by several factors which could lead to reduced titers after preparation and storage and, ultimately, subtherapeutic applications. Determining the stability of different phages in different recipients according to the route of administration is therefore one of the first important steps in establishing a standardized protocol for phage therapy.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Terapia de Fagos , Rinosinusitis , Sepsis , Humanos , Terapia de Fagos/métodos , Infecciones Bacterianas/terapia
3.
Plant Dis ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221240

RESUMEN

Eruca vesicaria subsp. sativa (Mill.) Thell. (arugula or rocket) is a leafy vegetable originating from the Mediterranean region primarily being sold in bagged salads. From 2014 to 2017, plants (cv. Montana) exhibiting blackened leaf veins and irregular V-shaped chlorotic to necroic lesions at the leaf margins were observed in commercial greenhouses in Flanders, Belgium (Figure S1A). Symptoms started after harvest of the first cut, indicating that leaf injury favours disease development. By the last cut, infections had spread uniformly across the plots, with symptoms advanced to the point where harvesting was no longer profitable. Excised surface-sterilized necrotic leaf tissue and seeds were homogenized in phosphate buffer (PB), followed by dilution plating on Pseudomonas Agar F containing sucrose. After four days at 28°C, bright yellow round, mucoid, convex Xanthomonas-like colonies were obtained, both from leaves and seeds. For confirmation, DNA was extracted from pure cultures after which a partial fragment of gyrB was amplified and sequenced (Holtappels et al. 2022). Amplicons were trimmed to 530 nucleotides (Genbank ON815895-ON815900) according to Parkinson et al. (2007) and compared with the NCBI database. Strain GBBC 3139 shares 100% sequence identity with Xanthomonas campestris pv. campestris (Xcc) type strain LMG 568 and with RKFB 1361-1364, isolated from arugula in Serbia (Prokic et al. 2022). The other isolates from Belgian rocket - GBBC 3036, 3058, 3077, 3217 and 3236 - all have a gyrB sequence 100% identical to that of Xcc strain ICMP 4013, among others. To determine the genetic relatedness to other pathogenic Xc strains, the genomes of GBBC 3077, 3217, 3236 and 3139 were sequenced using a MinION (Nanopore) and non-clonal sequences were submitted to NCBI (BioProject PRJNA967242). Genomes were compared by calculating Average Nucleotide Identity (ANI). This revealed that the Belgian strains cluster together with Xc isolates originating from Brassica crops and separate from strains identified as Xc pv. barbareae, pv. incanae and pv. raphani (Figure S2A). Their designation as pv. campestris is supported by maximum likelihood clustering of concatenated gyrB-avrBs2 sequences (EPPO, 2021; Figure S2B,C). Finally, pathogenicity was verified on five-week-old rocket 'Pronto' plants grown in a commercial potting mix by cutting the leaves along the midrib with scissors dipped into a suspension of 108 cfu/ml of each strain or PB as control (4 plants/strain). Plants were kept in closed polypropylene boxes for 48 hr to support high humidity and facilitate infection. They were then maintained at 25 ± 2 °C. Lesions like those observed on commercial plants developed on the inoculated leaves within one week (Figure S1B). Bacterial colonies reisolated from symptomatic tissue were identified based on gyrB as the strains used for inoculation, thereby fulfilling Koch's postulates. To the best of our knowledge, this is the first report of black rot disease in arugula caused by Xcc in Belgium. Previously, Xcc on arugula has been reported in Argentina, California and Serbia as well (Romero et al. 2008; Rosenthal et al. 2017; Prokic et al. 2022). Arugula being a minor crop in Belgium, challenged by Xcc infections and strong import competition, many growers have abandoned the sector in recent years. Therefore, this study makes a strong case for early detection of disease symptoms and timely application of relevant management strategies in vulnerable crop settings.

4.
Open Forum Infect Dis ; 10(2): ofad051, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36861092

RESUMEN

Background: Prosthetic joint infection (PJI) caused by Pseudomonas aeruginosa represents a severe complication in orthopedic surgery. We report the case of a patient with chronic PJI from P. aeruginosa successfully treated with personalized phage therapy (PT) in combination with meropenem. Methods: A 62-year-old woman was affected by a chronic right hip prosthesis infection caused by P. aeruginosa since 2016 . The patient was treated with phage Pa53 (I day 10 mL q8h, then 5 mL q8h via joint drainage for 2 weeks) in association with meropenem (2gr q12h iv) after a surgical procedure. A 2-year clinical follow up was performed. An in vitro bactericidal assay of the phage alone and in combination with meropenem against a 24-hour-old biofilm of bacterial isolate was also carried out. Results: No severe adverse events were observed during PT. Two years after suspension, there were no clinical signs of infection relapse, and a marked leukocyte scan showed no pathological uptake areas. In vitro studies showed that the minimum biofilm eradicating concentration of meropenem was 8 µg/mL. No biofilm eradication was observed at 24 hours incubation with phages alone (108 plaque-forming units [PFU]/mL). However, the addition of meropenem at suberadicating concentration (1 µg/mL) to phages at lower titer (103 PFU/mL) resulted in a synergistic eradication after 24 hours of incubation. Conclusions: Personalized PT, in combination with meropenem, was found to be safe and effective in eradicating P. aeruginosa infection. These data encourage the development of personalized clinical studies aimed at evaluating the efficacy of PT as an adjunct to antibiotic therapy for chronic persistent infections.

5.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887231

RESUMEN

Helicobacter pylori, a significant human gastric pathogen, has been demonstrating increased antibiotic resistance, causing difficulties in infection treatment. It is therefore important to develop alternatives or complementary approaches to antibiotics to tackle H. pylori infections, and (bacterio)phages have proven to be effective antibacterial agents. In this work, prophage isolation was attempted using H. pylori strains and UV radiation. One phage was isolated and further characterized to assess potential phage-inspired therapeutic alternatives to H. pylori infections. HPy1R is a new podovirus prophage with a genome length of 31,162 bp, 37.1% GC, encoding 36 predicted proteins, of which 17 were identified as structural. Phage particles remained stable at 37 °C, from pH 3 to 11, for 24 h in standard assays. Moreover, when submitted to an in vitro gastric digestion model, only a small decrease was observed in the gastric phase, suggesting that it is adapted to the gastric tract environment. Together with its other characteristics, its capability to suppress H. pylori population levels for up to 24 h post-infection at multiplicities of infection of 0.01, 0.1, and 1 suggests that this newly isolated phage is a potential candidate for phage therapy in the absence of strictly lytic phages.


Asunto(s)
Bacteriófagos , Infecciones por Helicobacter , Helicobacter pylori , Antibacterianos , Bacteriófagos/genética , Genómica , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/terapia , Humanos , Profagos/genética
6.
Viruses ; 13(10)2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34696475

RESUMEN

Since the beginning of the 20th century, bacteriophages (phages), i.e., viruses that infect bacteria, have been used as antimicrobial agents for treating various infections. Phage preparations targeting a number of bacterial pathogens are still in use in the post-Soviet states and are experiencing a revival in the Western world. However, phages have never been used to treat diseases caused by Bacteroides fragilis, the leading agent cultured in anaerobic abscesses and postoperative peritonitis. Enterotoxin-producing strains of B. fragilis have been associated with the development of inflammatory diarrhea and colorectal carcinoma. In this study, we evaluated the molecular biosafety and antimicrobial properties of novel phage species vB_BfrS_VA7 (VA7) lysate, as well as its impact on cytokine IL-8 production in an enterotoxigenic B. fragilis (ETBF)-infected colonic epithelial cell (CEC) culture model. Compared to untreated infected cells, the addition of phage VA7 to ETBF-infected CECs led to significantly reduced bacterial counts and IL-8 levels. This in vitro study confirms the potential of phage VA7 as an antibacterial agent for use in prophylaxis or in the treatment of B. fragilis infections and associated colorectal carcinoma.


Asunto(s)
Bacteriófagos , Infecciones por Bacteroides/terapia , Bacteroides fragilis/virología , Terapia de Fagos , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Colon/patología , Neoplasias Colorrectales , Diarrea , Células Epiteliales , Humanos
7.
Viruses ; 13(10)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34696512

RESUMEN

Bacterial kiwifruit vine disease (Pseudomonas syringae pv. actinidiae, Psa) and halo blight of bean (P. syringae pv. phaseolicola, Pph) are routinely treated with copper, leading to environmental pollution and bacterial copper resistance. An alternative sustainable control method could be based on bacteriophages, as phage biocontrol offers high specificity and does not result in the spread of toxic residues into the environment or the food chain. In this research, specific phages suitable for phage-based biocontrol strategies effective against Psa and Pph were isolated and characterized. In total, sixteen lytic Pph phage isolates and seven lytic Psa phage isolates were isolated from soil in Piedmont and Veneto in northern Italy. Genome characterization of fifteen selected phages revealed that the isolated Pph phages were highly similar and could be considered as isolates of a novel species, whereas the isolated Psa phages grouped into four distinct clades, two of which represent putative novel species. No lysogeny-, virulence- or toxin-related genes were found in four phages, making them suitable for potential biocontrol purposes. A partial biological characterization including a host range analysis was performed on a representative subset of these isolates. This analysis was a prerequisite to assess their efficacy in greenhouse and in field trials, using different delivery strategies.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Enfermedades de las Plantas/terapia , Pseudomonas syringae/virología , Actinidia/virología , Bacteriófagos/clasificación , Bacteriófagos/genética , Frutas/virología , Especificidad del Huésped , Italia , Lisogenia , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/virología , Virulencia
8.
PLoS Pathog ; 17(3): e1009418, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33720991

RESUMEN

Burkholderia multivorans is a member of the Burkholderia cepacia complex (Bcc), notorious for its pathogenicity in persons with cystic fibrosis. Epidemiological surveillance suggests that patients predominantly acquire B. multivorans from environmental sources, with rare cases of patient-to-patient transmission. Here we report on the genomic analysis of thirteen isolates from an endemic B. multivorans strain infecting four cystic fibrosis patients treated in different pediatric cystic fibrosis centers in Belgium, with no evidence of cross-infection. All isolates share an identical sequence type (ST-742) but whole genome analysis shows that they exhibit peculiar patterns of genomic diversity between patients. By combining short and long reads sequencing technologies, we highlight key differences in terms of small nucleotide polymorphisms indicative of low rates of adaptive evolution within patient, and well-defined, hundred kbps-long segments of high enrichment in mutations between patients. In addition, we observed large structural genomic variations amongst the isolates which revealed different plasmid contents, active roles for transposase IS3 and IS5 in the deactivation of genes, and mobile prophage elements. Our study shows limited within-patient B. multivorans evolution and high between-patient strain diversity, indicating that an environmental microdiverse reservoir must be present for this endemic strain, in which active diversification is taking place. Furthermore, our analysis also reveals a set of 30 parallel adaptations across multiple patients, indicating that the specific genomic background of a given strain may dictate the route of adaptation within the cystic fibrosis lung.


Asunto(s)
Infecciones por Burkholderia/genética , Fibrosis Quística/microbiología , Adulto , Burkholderia , Infecciones por Burkholderia/epidemiología , Niño , Preescolar , Enfermedades Endémicas , Femenino , Genómica , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA