Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Haematologica ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721745

RESUMEN

Antibody-drug conjugates (ADCs) represent one of the most successful therapeutic approaches introduced in clinical practice in the last few years. Loncastuximab tesirine (ADCT-402) is a CD19 targeting ADC, in which the antibody is conjugated through a protease cleavable dipeptide linker to a pyrrolobenzodiazepine (PBD) dimer warhead (SG3199). Based on the results of a phase 2 study, loncastuximab tesirine was recently approved for adult patients with relapsed/refractory large B-cell lymphoma. We assessed the activity of loncastuximab tesirine using in vitro and in vivo models of lymphomas, correlated its activity with CD19 expression levels, and identified combination partners providing synergy with loncastuximab tesirine. Loncastuximab tesirine was tested across 60 lymphoma cell lines. Loncastuximab tesirine had strong cytotoxic activity in B-cell lymphoma cell lines. The in vitro activity was correlated with CD19 expression level and intrinsic sensitivity of cell lines to the ADC's warhead. Loncastuximab tesirine was more potent than other anti-CD19 ADCs (coltuximab ravtansine, huB4-DGN462), albeit the pattern of activity across cell lines was correlated. Loncastuximab tesirine activity was also largely correlated with cell line sensitivity to R-CHOP. Combinatorial in vitro and in vivo experiments identified the benefit of adding loncastuximab tesirine to other agents, especially BCL2 and PI3K inhibitors. Our data support the further development of loncastuximab tesirine as a single agent and in combination for patients affected by mature B-cell neoplasms. The results also highlight the importance of CD19 expression and the existence of lymphoma populations characterized by resistance to multiple therapies.

2.
Front Immunol ; 15: 1327405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601153

RESUMEN

Introduction: Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an overall poor prognosis and high relapse rate. Multiple factors including genetic abnormalities, differentiation defects and altered cellular metabolism contribute to AML development and progression. Though the roles of oxidative phosphorylation and glycolysis are defined in AML, the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined. Methods: We studied the expression of the key enzymes involved in the HBP in AML blasts and stem cells by RNA sequencing at the single-cell and bulk level. We performed flow cytometry to study OGT protein expression and global O-GlcNAcylation. We studied the functional effects of inhibiting O-GlcNAcylation on transcriptional activation in AML cells by Western blotting and real time PCR and on cell cycle by flow cytometry. Results: We found higher expression levels of the key enzymes in the HBP in AML as compared to healthy donors in whole blood. We observed elevated O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) expression in AML stem and bulk cells as compared to normal hematopoietic stem and progenitor cells (HSPCs). We also found that both AML bulk cells and stem cells show significantly enhanced OGT protein expression and global O-GlcNAcylation as compared to normal HSPCs, validating our in silico findings. Gene set analysis showed substantial enrichment of the NF-κB pathway in AML cells expressing high OGT levels. Inhibition of O-GlcNAcylation decreased NF-κB nuclear translocation and the expression of selected NF-κB-dependent genes controlling cell cycle. It also blocked cell cycle progression suggesting a link between enhanced O-GlcNAcylation and NF-κB activation in AML cell survival and proliferation. Discussion: Our study suggests the HBP may prove a potential target, alone or in combination with other therapeutic approaches, to impact both AML blasts and stem cells. Moreover, as insufficient targeting of AML stem cells by traditional chemotherapy is thought to lead to relapse, blocking HBP and O-GlcNAcylation in AML stem cells may represent a novel promising target to control relapse.


Asunto(s)
Leucemia Mieloide Aguda , FN-kappa B , Humanos , FN-kappa B/metabolismo , Vías Biosintéticas , Hexosaminas , Leucemia Mieloide Aguda/genética , Células Madre/metabolismo , Recurrencia , ARN/metabolismo
3.
Pathog Immun ; 9(1): 1-17, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550613

RESUMEN

This review focuses on the use of chimeric antigen receptor (CAR)-T cell therapy to treat non-Hodgkin's lymphoma (NHL), a classification of heterogeneous malignant neoplasms of the lymphoid tissue. Despite various conventional and multidrug chemotherapies, the poor prognosis for NHL patients remains and has prompted the utilization of groundbreaking personalized therapies such as CAR-T cells. CAR-T cells are T cells engineered to express a CAR that enables T cells to specifically lyse tumor cells with extracellular expression of a tumor antigen of choice. A CAR is composed of an extracellular antibody fragment or target protein binding domain that is conjugated to activating intracellular signaling motifs common to T cells. In general, CAR-T cell therapies for NHL are designed to recognize cellular markers ubiquitously expressed on B cells such as CD19+, CD20+, and CD22+. Clinical trials using CAR-T cells such as ZUMA-7 and TRANSFORM demonstrated promising results compared to standard of care and ultimately led to FDA approval for the treatment of relapsed/refractory NHL. Despite the success of CAR-T therapy for NHL, challenges include adverse side effects as well as extrinsic and intrinsic mechanisms of tumor resistance that lead to suboptimal outcomes. Overall, CAR-T cell therapies have improved clinical outcomes in NHL patients and generated optimism around their future applications.

4.
Cytometry B Clin Cytom ; 106(1): 11-24, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345160

RESUMEN

The 5-azacytidine (AZA) and decitabine (DEC) are noncytotoxic, differentiation-inducing therapies approved for treatment of myelodysplastic syndrome, acute myeloid leukemias (AML), and under evaluation as maintenance therapy for AML postallogeneic hematopoietic stem cell transplant and to treat hemoglobinapathies. Malignant cell cytoreduction is thought to occur by S-phase specific depletion of the key epigenetic regulator, DNA methyltransferase 1 (DNMT1) that, in the case of cancers, thereby releases terminal-differentiation programs. DNMT1-targeting can also elevate expression of immune function genes (HLA-DR, MICA, MICB) to stimulate graft versus leukemia effects. In vivo, there is a large inter-individual variability in DEC and 5-AZA activity because of pharmacogenetic factors, and an assay to quantify the molecular pharmacodynamic effect of DNMT1-depletion is a logical step toward individualized or personalized therapy. We developed and analytically validated a flow cytometric assay for DNMT1 epitope levels in blood and bone marrow cell subpopulations defined by immunophenotype and cell cycle state. Wild type (WT) and DNMT1 knock out (DKO) HC116 cells were used to select and optimize a highly specific DNMT1 monoclonal antibody. Methodologic validation of the assay consisted of cytometry and matching immunoblots of HC116-WT and -DKO cells and peripheral blood mononuclear cells; flow cytometry of H116-WT treated with DEC, and patient samples before and after treatment with 5-AZA. Analysis of patient samples demonstrated assay reproducibility, variation in patient DNMT1 levels prior to treatment, and DNMT1 depletion posttherapy. A flow-cytometry assay has been developed that in the research setting of clinical trials can inform studies of DEC or 5-AZA treatment to achieve targeted molecular pharmacodynamic effects and better understand treatment-resistance/failure.


Asunto(s)
Leucemia Mieloide Aguda , Leucocitos Mononucleares , Humanos , Decitabina/farmacología , Decitabina/uso terapéutico , Citometría de Flujo , Reproducibilidad de los Resultados , Azacitidina/farmacología , Azacitidina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Biomarcadores
6.
Front Immunol ; 14: 1022890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483595

RESUMEN

SARS CoV-2 has caused a global pandemic leading to significant morbidity and mortality. There is a need to elucidate and further understand the implications of COVID-19 disease on the immune system to develop improved therapeutic strategies. In particular, Natural Killer (NK) cells play an essential role in mediating the innate immune response against viral infections. To better understand the role of innate immunity in COVID-19, we characterized the phenotype of circulating NK cells from 74 COVID-19 patients and 25 controls. Through evaluating the protein expression of activating and inhibitory NK cell surface molecules using dimension reduction analysis and clustering, we identified 4 specific clusters of NK cells specific to disease state (COVID-19 positive or COVID-19 negative) and characterized COVID-19 positive NK cells as: NGK2A+KIR2DL1+NKG2C-. Utilizing blocking antibodies specific for receptors NKG2A and KIR2DL1, we found that both NKG2A and KIR2DL1 blockade markedly enhances the ability of NK cells from COVID-19 positive patients to lyse SARS-Cov-2 infected cells. Overall, this study reveals new insights into NK cell phenotypes during SARS-CoV-2 infection and suggests a therapeutic approach worthy of further investigation to enhance NK cell-mediated responses against the virus.


Asunto(s)
Antineoplásicos , COVID-19 , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Células Asesinas Naturales , Inmunidad Innata , Receptores KIR2DL1/metabolismo
7.
Blood Cancer J ; 12(11): 158, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36404343

RESUMEN

The combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) has been demonstrated to have comparable effectiveness or better to ATRA and chemotherapy (CHT) in non-high-risk acute promyelocytic leukemia (APL). However, the efficacy of ATRA-ATO compared to ATRA-ATO plus CHT in high-risk APL remains unknown. Here we performed a randomized multi-center non-inferiority phase III study to compare the efficacy of ATRA-ATO and ATRA-ATO plus CHT in newly diagnosed all-risk APL to address this question. Patients were assigned to receive ATRA-ATO for induction, consolidation, and maintenance or ATRA-ATO plus CHT for induction followed by three cycles of consolidation therapy, and maintenance therapy with ATRA-ATO. In the non-CHT group, hydroxyurea was used to control leukocytosis. A total of 128 patients were treated. The complete remission rate was 97% in both groups. The 2-year disease-free, event-free survival rates in the non-CHT group and CHT group in all-risk patients were 98% vs 97%, and 95% vs 92%, respectively (P = 0.62 and P = 0.39, respectively). And they were 94% vs 87%, and 85% vs 78% in the high-risk patients (P = 0.52 and P = 0.44, respectively). This study demonstrated that ATRA-ATO had the same efficacy as the ATRA-ATO plus CHT in the treatment of patients with all-risk APL.


Asunto(s)
Arsenicales , Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Trióxido de Arsénico/uso terapéutico , Arsenicales/uso terapéutico , Óxidos/uso terapéutico , Resultado del Tratamiento , Tretinoina/uso terapéutico
8.
Biology (Basel) ; 11(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36138741

RESUMEN

Background: Hepatitis C virus (HCV) therapy lowers risk of hepatocellular carcinoma (HCC). Little is known about factors driving/preceding HCC in treated persons. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) regulate host response and pathogenesis of disease. We investigated plasma levels of these RNAs and select serum markers before, during, and after HCV therapy, preceding HCC. Methods: Of 187 DAA treated HCV patients where therapy oriented longitudinal sampling was performed at a time without HCC diagnosis, 9 were subsequently diagnosed with HCC within 2 years of therapy. They were matched with 7 patients not diagnosed with HCC over the same time period. RNASeq was performed on plasma, and serum was assessed for biomarkers of inflammation by ELISA. Results: HCC diagnosis was 19 months (6-28) after therapy start in the HCC group. 73 and 63 miRs were differentially expressed at baseline (before DAA therapy) and 12 weeks after DAA therapy comparing HCC and non-HCC groups. Several lncRNA- showed differential expression as well. Several miRNA suppressors of cancer-related pathways, lncRNA- and mRNA-derived stabilized short RNAs were consistently absent in the plasma of patients who developed HCC. Serum IP10, and MCP-1 level was higher in the HCC group 12 weeks after therapy, and distinct miRNAs correlated with IP10 and MCP-1. Finally, in a focused analysis of 8 miRNAs best associated with HCC we observed expression of mi576 and mi-5189 correlation with expression of a select group of PBMC mRNA. Conclusions: These results are consistent with complex interplay between RNA-mediated host immune regulation and cancer suppression, strikingly skewed 12 weeks following therapy, prior to HCC diagnosis.

9.
World J Surg ; 46(10): 2350-2354, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35763103

RESUMEN

BACKGROUND: Patient understanding of surgical procedures is often incomplete at the time they are performed, invalidating consent, and exposing healthcare providers to complaints and claims of failure to inform. Remote consultations, language barriers and patient factors can hinder an effective consent pathway. New approaches are needed to support communication and shared decision-making. METHODS: Multi-language digital animations explaining laparoscopic cholecystectomy were introduced at The Royal London Hospital for patients who attended for elective surgery ( www.explainmyprocedure.com/lapchole ). Patients completed questionnaires on the day of their procedure both before and after introduction of the animations. We assessed patient-reported understanding of the procedure, its intended benefits, the possible risks, and alternatives to treatment in 72 consecutive patients, 37 before (no animation group) and after 35 after introducing the animations into the consent pathway (animation group). Patient understanding in the two groups was compared. RESULTS: The two groups were well matched in respect of age, sex and whether English was their first spoken language. The proportions of patients who reported they completely understood the procedure, its benefits, risks, and alternatives in the no animation group were 54, 57, 38 and 24% and in the animation group, 91, 91, 74 and 77%, respectively; p < 0.01 for each comparison. CONCLUSION: The integration of multi-language laparoscopic cholecystectomy video animations into the patient consent pathway was associated with substantial improvement in reported understanding of the procedure, benefits, risks, and alternatives to treatment. This approach can be applied across all surgical disciplines in a standardised manner in an era of accelerated elective work and remote consultations.


Asunto(s)
Colecistectomía Laparoscópica , Colecistectomía Laparoscópica/métodos , Comunicación , Barreras de Comunicación , Procedimientos Quirúrgicos Electivos/métodos , Humanos , Consentimiento Informado
10.
Cancer Discov ; 12(8): 1886-1903, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35554512

RESUMEN

Chimeric antigen receptor T-cell (CAR-T cell) therapy directed at CD19 produces durable remissions in the treatment of relapsed/refractory non-Hodgkin lymphoma (NHL). Nonetheless, many patients receiving CD19 CAR-T cells fail to respond for unknown reasons. To reveal changes in 4-1BB-based CD19 CAR-T cells and identify biomarkers of response, we used single-cell RNA sequencing and protein surface marker profiling of patient CAR-T cells pre- and postinfusion into patients with NHL. At the transcriptional and protein levels, we note the evolution of CAR-T cells toward a nonproliferative, highly differentiated, and exhausted state, with an enriched exhaustion profile in CAR-T cells of patients with poor response marked by TIGIT expression. Utilizing in vitro and in vivo studies, we demonstrate that TIGIT blockade alone improves the antitumor function of CAR-T cells. Altogether, we provide evidence of CAR-T cell dysfunction marked by TIGIT expression driving a poor response in patients with NHL. SIGNIFICANCE: This is the first study investigating the mechanisms linked to CAR-T patient responses based on the sequential analysis of manufactured and infused CAR-T cells using single-cell RNA and protein expression data. Furthermore, our findings are the first to demonstrate an improvement of CAR-T cell efficacy with TIGIT inhibition alone. This article is highlighted in the In This Issue feature, p. 1825.


Asunto(s)
Linfoma no Hodgkin , Receptores Quiméricos de Antígenos , Receptores Inmunológicos , Linfocitos T , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva , Linfoma no Hodgkin/genética , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos/genética , Receptores Inmunológicos/genética , Linfocitos T/patología
11.
Front Oncol ; 12: 824594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402240

RESUMEN

DNA methylation, catalyzed by DNA methyltransferase (DNMT), is a well-characterized epigenetic modification in cancer cells. In particular, promoter hypermethylation of AR and ESR1 results in loss of expression on Androgen Receptor (AR) and Estrogen Receptor (ER), respectively, and is associated with a hormone refractory state. We now report that Glycogen Synthase Kinase 3 (GSK3) phosphorylates DNMT1 at S714, which is localized to a 62 amino acid region referred to as auto-inhibitory linker, which functions to occlude the DNA from the active site of DNMT1 to prevent the methylation of unmethylated DNA. Molecular Dynamics simulation indicates that phosphorylation at S714 resulted in conformational rearrangement of the autoinhibitory domain that inactivated its ability to block the methylation of unmethylated DNA and resulted in enhanced DNA binding. Treatment with a novel and more selective inhibitor of GSK3 resulted in decreased methylation of the promoter region of genes encoding the Androgen Receptor (AR) and Estrogen Receptor alpha (ERa) and re-expression of the AR and ERa in AR negative prostate cancer and ER negative breast cancer cells, respectively. As a result, concurrent treatment with the GSK3 inhibitor resulted in responsiveness of AR negative prostate cancer and ER negative breast cancer cells to inhibitors of the AR or ER, respectively, in in vitro and in vivo experimental models.

12.
Transplant Cell Ther ; 28(5): 250.e1-250.e8, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35172204

RESUMEN

The administration of allogeneic natural killer (NK) cells following a lymphodepleting chemotherapy regimen is emerging as a well-tolerated therapeutic approach in the management of various malignancies. Contrary to the expected complications of allogeneic T cell therapy, there remains no evidence of graft-versus-host disease (GVHD) mediated by NK cells in numerous clinical trials. On the contrary, preclinical and clinical studies suggest that NK cells do not induce GVHD and in fact may prevent its development following allogeneic hematopoietic cell transplantation (HCT). In this study, we sought to determine the maximum tolerated dose of non-HLA-matched donor NK cells derived from peripheral blood and ex vivo expanded using a novel feeder cell platform. In a single-center Phase I clinical trial using a 3 × 3 design, 9 subjects each received 2 infusions of NK cells 2 weeks apart following a preparative regimen of cyclophosphamide (60 mg/kg i.v.) and fludarabine (25 mg/m2/day i.v for 5 days). No exogenous cytokines were administered. NK cells were administered at 3 dose levels: 1 × 107/kg, 2.5 × 107/kg, and 5 × 107/kg. Three subjects had myelodysplastic syndrome (MDS) or acute myelogenous leukemia (AML), and the other 6 subjects had colorectal carcinoma. Recipients were monitored over a 4-week period for GVHD as well as other adverse events and for persistence of donor NK cells in systemic circulation. Disease assessment was started at 28 days following the first NK cell infusion and continued until postinfusion day 100 or disease progression. In all 9 study subjects, there was no occurrence of GVHD and no dose-limiting toxicities that would warrant cohort expansion at any of the 3 planned cell dose levels. Low-level donor NK cell persistence was observed up to 4 weeks after the first NK cell infusion at all dose levels. The best observed response was a complete response with incomplete platelet recovery in a MDS subject who experienced disease relapse after prior allogeneic HCT. Other responses were stable disease in 1 subject with MDS and 2 subjects with colorectal cancer up to postinfusion day 100. This off-the-shelf, third-party NK cell product can be administered safely without inducing GVHD and exhibits in vivo persistence promoted by preparative lymphodepletion alone. The observed clinical responses could be enhanced by administration of exogenous cytokine support, as well as complementary approaches that promote NK cell function in the tumor microenvironment.


Asunto(s)
Enfermedad Injerto contra Huésped , Síndromes Mielodisplásicos , Adulto , Enfermedad Injerto contra Huésped/etiología , Humanos , Células Asesinas Naturales/patología , Dosis Máxima Tolerada , Síndromes Mielodisplásicos/terapia , Trasplante Homólogo , Donante no Emparentado
14.
Cancer Immunol Immunother ; 71(7): 1671-1680, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34816323

RESUMEN

Natural killer (NK) cells are cytotoxic lymphocytes that play a major role in the innate immune system. NK cells exhibit potent cytotoxic activity against cancer cells and virally infected cells without antigen priming. These unique cytotoxic properties make NK cells a promising therapeutic against cancer. Limitations of NK cell therapy include deficiencies in high clinical efficacy often due to a need for a high NK cell to target cell ratio to achieve effective killing. In order to address the suboptimal efficacy of current adoptive NK cell therapy, a high throughput screen (HTS) was designed and performed to identify drug-like compounds that increase NK cytotoxic activity against tumor cells without affecting the normal cells. This screen was performed in a 384-well plate format utilizing an expanded primary NK cell product and ovarian cancer cells as a target cell (TC) line. Of the 8000 diverse small molecules screened, 16 hits were identified (0.2% hit rate) based on both a robust Z (RZ) score < -3 and a greater than 10% increase in NK cell killing. A validation screen had a confirmation rate of 70%. Select compounds were further validated and characterized by additional cytotoxicity assays including activity against multiple blood cancer and solid tumor cell lines, with no effect on primary human T cells. This work demonstrates that high-throughput screening can be reliably used to identify compounds that increase NK tumoricidal activity in vitro that can be further investigated and translated for potential clinical application. Précis: Our work led to the identification of promising compound that potently increases NK cell-mediated killing of a variety of different cancer cells, but no impact on the killing of normal cells. This compound demonstrates the utility of this assay.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias , Línea Celular Tumoral , Citotoxicidad Inmunológica , Humanos , Inmunoterapia Adoptiva , Células Asesinas Naturales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Linfocitos T
15.
Nat Commun ; 12(1): 7200, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893603

RESUMEN

Chimeric antigen receptor (CAR) T cells targeting the CD19 antigen are effective in treating adults and children with B-cell malignancies. Place-of-care manufacturing may improve performance and accessibility by obviating the need to cryopreserve and transport cells to centralized facilities. Here we develop an anti-CD19 CAR (CAR19) comprised of the 4-1BB co-stimulatory and TNFRSF19 transmembrane domains, showing anti-tumor efficacy in an in vivo xenograft lymphoma model. CAR19 T cells are manufactured under current good manufacturing practices (cGMP) at two disparate clinical sites, Moscow (Russia) and Cleveland (USA). The CAR19 T-cells is used to treat patients with relapsed/refractory pediatric B-cell Acute Lymphocytic Leukemia (ALL; n = 31) or adult B-cell Lymphoma (NHL; n = 23) in two independently conducted phase I clinical trials with safety as the primary outcome (NCT03467256 and NCT03434769, respectively). Probability of measurable residual disease-negative remission was also a primary outcome in the ALL study. Secondary outcomes include complete remission (CR) rates, overall survival and median duration of response. CR rates are 89% (ALL) and 73% (NHL). After a median follow-up of 17 months, one-year survival rate of ALL complete responders is 79.2% (95%CI 64.5‒97.2%) and median duration of response is 10.2 months. For NHL complete responders one-year survival is 92.9%, and median duration of response has not been reached. Place-of-care manufacturing produces consistent CAR-T cell products at multiple sites that are effective for the treatment of patients with B-cell malignancies.


Asunto(s)
Antígenos CD19/inmunología , Linfocitos B/inmunología , Linfoma de Células B/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Adolescente , Adulto , Anciano , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos NOD , Persona de Mediana Edad , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Supervivencia sin Progresión , Receptores de Antígenos de Linfocitos T , Receptores del Factor de Necrosis Tumoral/química , Federación de Rusia , Estados Unidos , Adulto Joven
16.
Oncogene ; 40(33): 5236-5246, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239044

RESUMEN

Despite the fact that AML is the most common acute leukemia in adults, patient outcomes are poor necessitating the development of novel therapies. We identified that inhibition of Thioredoxin Reductase (TrxR) is a promising strategy for AML and report a highly potent and specific inhibitor of TrxR, S-250. Both pharmacologic and genetic inhibition of TrxR impairs the growth of human AML in mouse models. We found that TrxR inhibition leads to a rapid and marked impairment of metabolism in leukemic cells subsequently leading to cell death. TrxR was found to be a major and direct regulator of metabolism in AML cells through impacts on both glycolysis and the TCA cycle. Studies revealed that TrxR directly regulates GAPDH leading to a disruption of glycolysis and an increase in flux through the pentose phosphate pathway (PPP). The combined inhibition of TrxR and the PPP led to enhanced leukemia growth inhibition. Overall, TrxR abrogation, particularly with S-250, was identified as a promising strategy to disrupt AML metabolism.


Asunto(s)
Vía de Pentosa Fosfato , Reductasa de Tiorredoxina-Disulfuro , Muerte Celular , Ciclo del Ácido Cítrico , Glucólisis , Humanos
18.
Leukemia ; 35(10): 2799-2812, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34244611

RESUMEN

The prognosis of most patients with AML is poor due to frequent disease relapse. The cause of relapse is thought to be from the persistence of leukemia initiating cells (LIC's) following treatment. Here we assessed RNA based changes in LICs from matched patient diagnosis and relapse samples using single-cell RNA sequencing. Previous studies on AML progression have focused on genetic changes at the DNA mutation level mostly in bulk AML cells and demonstrated the existence of DNA clonal evolution. Here we identified in LICs that the phenomenon of RNA clonal evolution occurs during AML progression. Despite the presence of vast transcriptional heterogeneity at the single cell level, pathway analysis identified common signaling networks involving metabolism, apoptosis and chemokine signaling that evolved during AML progression and become a signature of relapse samples. A subset of this gene signature was validated at the protein level in LICs by flow cytometry from an independent AML cohort and functional studies were performed to demonstrate co-targeting BCL2 and CXCR4 signaling may help overcome therapeutic challenges with AML heterogeneity. It is hoped this work will facilitate a greater understanding of AML relapse leading to improved prognostic biomarkers and therapeutic strategies to target LIC's.


Asunto(s)
Leucemia Mieloide Aguda/genética , ARN/genética , Anciano , Evolución Clonal/genética , Progresión de la Enfermedad , Femenino , Humanos , Lactante , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Pronóstico , Recurrencia , Análisis de Secuencia de ARN/métodos , Transducción de Señal/genética , Secuenciación del Exoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA