Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Commun ; 5(2): 100728, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37803827

RESUMEN

Cotton (Gossypium) stands as a crucial economic crop, serving as the primary source of natural fiber for the textile sector. However, the evolutionary mechanisms driving speciation within the Gossypium genus remain unresolved. In this investigation, we leveraged 25 Gossypium genomes and introduced four novel assemblies-G. harknessii, G. gossypioides, G. trilobum, and G. klotzschianum (Gklo)-to delve into the speciation history of this genus. Notably, we encountered intricate phylogenies potentially stemming from introgression. These complexities are further compounded by incomplete lineage sorting (ILS), a factor likely to have been instrumental in shaping the swift diversification of cotton. Our focus subsequently shifted to the rapid radiation episode during a concise period in Gossypium evolution. For a recently diverged lineage comprising G. davidsonii, Gklo, and G. raimondii, we constructed a finely detailed ILS map. Intriguingly, this analysis revealed the non-random distribution of ILS regions across the reference Gklo genome. Moreover, we identified signs of robust natural selection influencing specific ILS regions. Noteworthy variations pertaining to speciation emerged between the closely related sister species Gklo and G. davidsonii. Approximately 15.74% of speciation structural variation genes and 12.04% of speciation-associated genes were estimated to intersect with ILS signatures. These findings enrich our understanding of the role of ILS in adaptive radiation, shedding fresh light on the intricate speciation history of the Gossypium genus.


Asunto(s)
Gossypium , Gossypium/genética , Gossypium/química
2.
Int J Biol Macromol ; 226: 1248-1260, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36442570

RESUMEN

Cotton is one of the most important economic and fiber crops in the world. KNOX is one class of universal transcription factors, which plays important roles in plant growth and development as well as response to different stresses. Although there are many researches on KNOXs in other plant species, there are few reports on cotton. In this study, we systematically and comprehensively identified all KNOX genes in upland cotton and its two ancestral species; we also studied their functions by employing RNA-seq analysis and virus-induced gene silence (VIGS). A total of 89 KNOX genes were identified from three cotton species. Among them, 44 were from upland cotton, 22 and 23 were found in its ancestral species G. raimondii and G. arboreum, respectively. Plant polyploidization and domestication play a selective force driving KNOX gene evolution. Phylogenetic analysis displayed that KNOX genes were evolved into three Classes. The intron length and exon number differed in each Class. Transcriptome data showed that KNOX genes of Class II were widely expressed in multiple tissues, including fiber. The majority of KNOX genes were induced by different abiotic stresses. Additionally, we found multiple cis-elements related to stress in the promoter region of KNOX genes. VIGS silence of GhKNOX4-A and GhKNOX22-D genes showed significant growth and development effect in cotton seedlings under salt and drought treatments. Both GhKNOX4-A and GhKNOX22-D regulated plant tolerance; silencing both genes induced oxidative stresses, evidenced by reduced SOD activity and induced leave cell death, and also enhanced stomatal open and water loss. Thus, GhKNOX4-A and GhKNOX22-D may contribute to drought response by regulating stomata opening and oxidative stresses.


Asunto(s)
Sequías , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Estrés Fisiológico/genética , Cloruro de Sodio/metabolismo , Gossypium/genética , Gossypium/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Proc Natl Acad Sci U S A ; 119(44): e2209743119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279429

RESUMEN

Allopolyploidization, resulting in divergent genomes in the same cell, is believed to trigger a "genome shock", leading to broad genetic and epigenetic changes. However, little is understood about chromatin and gene-expression dynamics as underlying driving forces during allopolyploidization. Here, we examined the genome-wide DNase I-hypersensitive site (DHS) and its variations in domesticated allotetraploid cotton (Gossypium hirsutum and Gossypium barbadense, AADD) and its extant AA (Gossypium arboreum) and DD (Gossypium raimondii) progenitors. We observed distinct DHS distributions between G. arboreum and G. raimondii. In contrast, the DHSs of the two subgenomes of G. hirsutum and G. barbadense showed a convergent distribution. This convergent distribution of DHS was also present in the wild allotetraploids Gossypium darwinii and G. hirsutum var. yucatanense, but absent from a resynthesized hybrid of G. arboreum and G. raimondii, suggesting that it may be a common feature in polyploids, and not a consequence of domestication after polyploidization. We revealed that putative cis-regulatory elements (CREs) derived from polyploidization-related DHSs were dominated by several families, including Dof, ERF48, and BPC1. Strikingly, 56.6% of polyploidization-related DHSs were derived from transposable elements (TEs). Moreover, we observed positive correlations between DHS accessibility and the histone marks H3K4me3, H3K27me3, H3K36me3, H3K27ac, and H3K9ac, indicating that coordinated interplay among histone modifications, TEs, and CREs drives the DHS landscape dynamics under polyploidization. Collectively, these findings advance our understanding of the regulatory architecture in plants and underscore the complexity of regulome evolution during polyploidization.


Asunto(s)
Gossypium , Histonas , Cromatina/genética , Desoxirribonucleasa I , Elementos Transponibles de ADN , Gossypium/genética , Histonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA