Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Stem Cell ; 29(8): 1273-1284.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35858618

RESUMEN

Hematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward. HSCs from challenged mice demonstrated multiple cellular and molecular features of accelerated aging and developed clinically relevant blood and bone marrow phenotypes not normally observed in aged laboratory mice but commonly seen in elderly humans. In vivo HSC self-renewal divisions were absent or extremely rare during both challenge and recovery periods. The progressive, irreversible attrition of HSC function demonstrates that temporally discrete inflammatory events elicit a cumulative inhibitory effect on HSCs. This work positions early/mid-life inflammation as a mediator of lifelong defects in tissue maintenance and regeneration.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Anciano , Envejecimiento , Animales , Médula Ósea , Humanos , Inflamación , Ratones
2.
J Exp Med ; 214(3): 753-771, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28232469

RESUMEN

Despite the identification of several oncogenic driver mutations leading to constitutive JAK-STAT activation, the cellular and molecular biology of myeloproliferative neoplasms (MPN) remains incompletely understood. Recent discoveries have identified underlying disease-modifying molecular aberrations contributing to disease initiation and progression. Here, we report that deletion of Nol3 (Nucleolar protein 3) in mice leads to an MPN resembling primary myelofibrosis (PMF). Nol3-/- MPN mice harbor an expanded Thy1+LSK stem cell population exhibiting increased cell cycling and a myelomonocytic differentiation bias. Molecularly, this phenotype is mediated by Nol3-/--induced JAK-STAT activation and downstream activation of cyclin-dependent kinase 6 (Cdk6) and MycNol3-/- MPN Thy1+LSK cells share significant molecular similarities with primary CD34+ cells from PMF patients. NOL3 levels are decreased in CD34+ cells from PMF patients, and the NOL3 locus is deleted in a subset of patients with myeloid malignancies. Our results reveal a novel genetic PMF-like mouse model and identify a tumor suppressor role for NOL3 in the pathogenesis of myeloid malignancies.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas Musculares/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Hematopoyesis Extramedular/fisiología , Humanos , Quinasas Janus/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Mielofibrosis Primaria/etiología , Factor de Transcripción STAT3/fisiología , Transducción de Señal
3.
Cell Rep ; 13(11): 2412-2424, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26686632

RESUMEN

Whether aged hematopoietic stem and progenitor cells (HSPCs) have impaired DNA damage repair is controversial. Using a combination of DNA mutation indicator assays, we observe a 2- to 3-fold increase in the number of DNA mutations in the hematopoietic system upon aging. Young and aged hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) do not show an increase in mutation upon irradiation-induced DNA damage repair, and young and aged HSPCs respond very similarly to DNA damage with respect to cell-cycle checkpoint activation and apoptosis. Both young and aged HSPCs show impaired activation of the DNA-damage-induced G1-S checkpoint. Induction of chronic DNA double-strand breaks by zinc-finger nucleases suggests that HSPCs undergo apoptosis rather than faulty repair. These data reveal a protective mechanism in both the young and aged hematopoietic system against accumulation of mutations in response to DNA damage.


Asunto(s)
Envejecimiento , Genoma , Células Madre Hematopoyéticas/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de la radiación , Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Células Cultivadas , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Daño del ADN/efectos de la radiación , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de la radiación , Rayos gamma , Células Madre Hematopoyéticas/citología , Pérdida de Heterocigocidad , Ratones , Ratones Endogámicos C57BL , Mutación , Puntos de Control de la Fase S del Ciclo Celular/efectos de la radiación , Trasplante Homólogo , Irradiación Corporal Total
4.
Cell Cycle ; 14(17): 2734-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26178207

RESUMEN

Within regenerating tissues, aging is characterized by a progressive general deterioration of organ function, thought to be driven by the gradual depletion of functional adult stem cells. Although there are probably multifactorial mechanisms that result in compromized stem cell functionality with advancing age, the accumulation of DNA damage within the stem cell compartment is likely to make a major contribution to this process. However, the physiologic source of DNA damage within the different tissue specific stem cell compartments remains to be determined, as does the fate of stem cells exposed to such damage. Using the haematopoietic system as a model organ, we have recently shown that certain forms of physiologic stress, such as infection-associated inflammation and extensive blood loss, leads to the induction of biologically relevant levels of DNA damage in haematopoietic stem cells (HSCs) by dramatically increasing the proliferative index of this normally quiescent cell population. (1) We were also able to demonstrate that such stress-associated DNA damage was sufficient to completely deplete HSCs and promote severe aplastic anemia (SAA) in the Fanconi anemia (FA) knockout mouse model, which has compromized replication-associated DNA repair. In this "Extra Views" article, we extend this previous work to show that FA mice do not spontaneously develop a haematopoietic phenotype consistent with SAA, even at extreme old age. This suggests that HSC quiescence restricts the acquisition of DNA damage during aging and preserves the functional integrity of the stem cell pool. In line with this hypothesis, we provide an extended time course analysis of the response of FA knockout mice to chronic inflammatory stress and show that enforced HSC proliferation leads to a highly penetrant SAA phenotype, which closely resembles the progression of the disease in FA patients.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Anemia de Fanconi/metabolismo , Células Madre Hematopoyéticas/metabolismo , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Animales , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Células Madre Hematopoyéticas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Nature ; 520(7548): 549-52, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25707806

RESUMEN

Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia. However, the physiological source of DNA damage in HSCs from both normal and diseased individuals remains unclear. Here we show in mice that DNA damage is a direct consequence of inducing HSCs to exit their homeostatic quiescent state in response to conditions that model physiological stress, such as infection or chronic blood loss. Repeated activation of HSCs out of their dormant state provoked the attrition of normal HSCs and, in the case of mice with a non-functional Fanconi anaemia DNA repair pathway, led to a complete collapse of the haematopoietic system, which phenocopied the highly penetrant bone marrow failure seen in Fanconi anaemia patients. Our findings establish a novel link between physiological stress and DNA damage in normal HSCs and provide a mechanistic explanation for the universal accumulation of DNA damage in HSCs during ageing and the accelerated failure of the haematopoietic system in Fanconi anaemia patients.


Asunto(s)
Ciclo Celular , Daño del ADN , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Médula Ósea/patología , Muerte Celular , Proliferación Celular , Anemia de Fanconi/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
6.
Anemia ; 2012: 265790, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675615

RESUMEN

Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC). This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

7.
PLoS One ; 6(5): e19506, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21602936

RESUMEN

Cancer stem cells (CSCs) have been identified in a number of solid tumors, but not yet in rhabdomyosarcoma (RMS), the most frequently occurring soft tissue tumor in childhood. Hence, the aim of this study was to identify and characterize a CSC population in RMS using a functional approach. We found that embryonal rhabdomyosarcoma (eRMS) cell lines can form rhabdomyosarcoma spheres (short rhabdospheres) in stem cell medium containing defined growth factors over several passages. Using an orthotopic xenograft model, we demonstrate that a 100 fold less sphere cells result in faster tumor growth compared to the adherent population suggesting that CSCs were enriched in the sphere population. Furthermore, stem cell genes such as oct4, nanog, c-myc, pax3 and sox2 are significantly upregulated in rhabdospheres which can be differentiated into multiple lineages such as adipocytes, myocytes and neuronal cells. Surprisingly, gene expression profiles indicate that rhabdospheres show more similarities with neuronal than with hematopoietic or mesenchymal stem cells. Analysis of these profiles identified the known CSC marker CD133 as one of the genes upregulated in rhabdospheres, both on RNA and protein levels. CD133(+) sorted cells were subsequently shown to be more tumorigenic and more resistant to commonly used chemotherapeutics. Using a tissue microarray (TMA) of eRMS patients, we found that high expression of CD133 correlates with poor overall survival. Hence, CD133 could be a prognostic marker for eRMS. These experiments indicate that a CD133(+) CSC population can be enriched from eRMS which might help to develop novel targeted therapies against this pediatric tumor.


Asunto(s)
Antígenos CD/análisis , Glicoproteínas/análisis , Células Madre Neoplásicas/patología , Péptidos/análisis , Rabdomiosarcoma Embrionario/patología , Antígeno AC133 , Animales , Antígenos CD/genética , Biomarcadores de Tumor , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular Tumoral , Perfilación de la Expresión Génica , Glicoproteínas/genética , Humanos , Ratones , Péptidos/genética , Pronóstico , Rabdomiosarcoma Embrionario/diagnóstico , Tasa de Supervivencia , Análisis de Matrices Tisulares , Trasplante Heterólogo
8.
Mol Cancer Ther ; 8(7): 1838-45, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19509271

RESUMEN

Gene expression profiling has revealed that the gene coding for cannabinoid receptor 1 (CB1) is highly up-regulated in rhabdomyosarcoma biopsies bearing the typical chromosomal translocations PAX3/FKHR or PAX7/FKHR. Because cannabinoid receptor agonists are capable of reducing proliferation and inducing apoptosis in diverse cancer cells such as glioma, breast cancer, and melanoma, we evaluated whether CB1 is a potential drug target in rhabdomyosarcoma. Our study shows that treatment with the cannabinoid receptor agonists HU210 and Delta(9)-tetrahydrocannabinol lowers the viability of translocation-positive rhabdomyosarcoma cells through the induction of apoptosis. This effect relies on inhibition of AKT signaling and induction of the stress-associated transcription factor p8 because small interfering RNA-mediated down-regulation of p8 rescued cell viability upon cannabinoid treatment. Finally, treatment of xenografts with HU210 led to a significant suppression of tumor growth in vivo. These results support the notion that cannabinoid receptor agonists could represent a novel targeted approach for treatment of translocation-positive rhabdomyosarcoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Dronabinol/análogos & derivados , Dronabinol/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Rabdomiosarcoma/patología , Translocación Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Proliferación Celular/efectos de los fármacos , Femenino , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción PAX7/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptores de Interleucina-2/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA