Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Trends Biotechnol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39214790

RESUMEN

One-pot enzymatic synthesis is flourishing in synthetic chemistry, heralding a sustainable and green era. Recent advancements enable the creation of complex enzymatic prosthetic groups and regeneration of enzymatic cofactors such as S-adenosylmethionine. The next frontier is to develop the effective and innovative cofactors for essential micronutrients, metabolic modulators, and biomedicines.

2.
Aging Dis ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38913050

RESUMEN

This comprehensive review navigates the complex relationship between cellular aging, senescence, and cancer, unraveling the determinants of cellular fate. Beginning with an overview of cellular aging's significance in cancer, the review explores processes, changes, and molecular pathways influencing senescence. The review explores senescence as a dual mechanism in cancer, acting as a suppressor and contributor, focusing on its impact on therapy response. This review highlights opportunities for cancer therapies that target cellular senescence. The review further examines the senescence-associated secretory phenotype and strategies to modulate cellular aging to influence tumor behavior. Additionally, the review highlights the mechanisms of senescence escape in aging and cancer cells, emphasizing their impact on cancer prognosis and resistance to therapy. The article addresses current advances, unexplored aspects, and future perspectives in understanding cellular aging and senescence in cancer.

4.
iScience ; 27(6): 109979, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38832007

RESUMEN

This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.

5.
Chem Biol Interact ; 396: 111055, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763348

RESUMEN

This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Terapia Molecular Dirigida
6.
Ann Diagn Pathol ; 71: 152328, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38754357

RESUMEN

BACKGROUND: The status of the lung adenocarcinoma (LUAD) grading system and the association between LUAD differentiation, driver genes, and clinicopathological features remain to be elucidated. METHODS: We included patients with invasive non-mucinous LUAD, evaluated their differentiation, and collected available clinicopathological information, gene mutations, and analyzed clinical outcomes. RESULTS: Among the 907 patients with invasive non-mucinous LUAD, 321 (35.4 %) were poorly differentiated, 422 (46.5 %) were moderately differentiated, and 164 (18.1 %) were well differentiated. EGFR mutation was more common in the LUADs accompanied without CGP (complex glandular pattern) than LUADs with CGP (p < 0.001). Correlation analysis between mutations and clinical characteristics showed that EGFR gene mutation (p < 0.001), KRAS gene mutation (p < 0.05), and ALK gene rearrangement (p < 0.001) were significantly related to the degree of tumor differentiation, and the KRAS and ALK gene mutation frequencies were higher in the low-differentiation group than in the high and medium differentiation groups. The EGFR mutation frequency was higher in the well/moderately differentiated adenocarcinoma group. CONCLUSIONS: Our study adds to the evidence regarding the role of the grading system in prognosis. EGFR, KRAS, and ALK are related to the degree of tumor differentiation.


Asunto(s)
Adenocarcinoma del Pulmón , Receptores ErbB , Neoplasias Pulmonares , Mutación , Clasificación del Tumor , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Masculino , Femenino , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Persona de Mediana Edad , Anciano , Clasificación del Tumor/métodos , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores ErbB/genética , Adulto , Anciano de 80 o más Años , Quinasa de Linfoma Anaplásico/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Biomarcadores de Tumor/genética
7.
Transpl Immunol ; 85: 102052, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750973

RESUMEN

BACKGROUND: The aqueous humor, a transparent fluid secreted by the ciliary body, supports the lens of the eyeball. In this study, we analyzed the cytokine and chemokine profiles within the aqueous humor of the contralateral eye post-implantation of an implantable collamer lens (ICL) to evaluate potential subclinical inflammation in the second eye subsequent to ICL implantation in the first eye. METHODS: Aqueous humor samples were procured from both eyes of 40 patients (totaling 80 eyes) prior to bilateral ICL insertion. Subsequently, a comprehensive statistical analysis was conducted using the Luminex assay to quantify 30 different cytokines in these samples. RESULTS: Compared to the first eye, the aqueous humor of the second eye demonstrated decreased concentrations of IFN-γ (P = 0.038), IL-13 (P = 0.027), IL-17/IL-17 A (P = 0.012), and IL-4 (P = 0.025). No significant differences were observed in other cytokine levels between the two groups. Patients were then categorized based on the postoperative rise in intraocular pressure (IOP) in the first eye. The group with elevated IOP displayed elevated levels of EGF in the aqueous humor of the first eye (P = 0.013) and higher levels of PDGF-AB/BB in the aqueous humor of the second eye (P = 0.032) compared to the group with normal IOP. Within the elevated IOP group, the levels of EGF (P = 0.013) and IL-17/IL-17 A (P = 0.016) in the aqueous humor were lower in the second eye than in the first eye. In the normal IOP group, cytokine levels did not differ notably between eyes. CONCLUSION: Following sequential ICL implantation, it appears that a protective response may be activated to mitigate subclinical inflammation in the second eye induced by the initial implantation in the first eye. Additionally, the increase in IOP subsequent to surgery in the first eye may correlate with the presence of inflammatory mediators in the aqueous humor.


Asunto(s)
Humor Acuoso , Citocinas , Miopía , Humanos , Humor Acuoso/metabolismo , Masculino , Femenino , Miopía/cirugía , Miopía/metabolismo , Adulto , Citocinas/metabolismo , Implantación de Lentes Intraoculares , Inflamación , Persona de Mediana Edad , Presión Intraocular , Adulto Joven
8.
Platelets ; 35(1): 2308635, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38345065

RESUMEN

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) restricts platelet activation via platelet collagen receptor GPVI/FcRγ-chain. In this study, screening against collagen-induced platelet aggregation was performed to identify functional CEACAM1 extracellular domain fragments. CEACAM1 fragments, including Ala-substituted peptides, were synthesized. Platelet assays were conducted on healthy donor samples for aggregation, cytotoxicity, adhesion, spreading, and secretion. Mice were used for tail bleeding and FeCl3-induced thrombosis experiments. Clot retraction was assessed using platelet-rich plasma. Extracellular segments of CEACAM1 and A1 domain-derived peptide QDTT were identified, while N, A2, and B domains showed no involvement. QDTT inhibited platelet aggregation. Ala substitution for essential amino acids (Asp139, Thr141, Tyr142, Trp144, and Trp145) in the QDTT sequence abrogated collagen-induced aggregation inhibition. QDTT also suppressed platelet secretion and "inside-out" GP IIb/IIIa activation by convulxin, along with inhibiting PI3K/Akt pathways. QDTT curtailed FeCl3-induced mesenteric thrombosis without significantly prolonging bleeding time, implying the potential of CEACAM1 A1 domain against platelet activation without raising bleeding risk, thus paving the way for novel antiplatelet drugs.


What is the context? The study focuses on Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and its role in platelet activation, particularly through the GPVI/FcRγ-chain pathway.The research aims to identify specific fragments of CEACAM1's extracellular domain that could restrict platelet activation, without increasing bleeding risk.What is new? The researchers identified a peptide called QDTT derived from the A1 domain of CEACAM1's extracellular segment. This peptide demonstrated the ability to inhibit platelet aggregation, secretion, and GP IIb/IIIa activation.The study also revealed that specific amino acids within the QDTT sequence were essential for its inhibitory effects on collagen-induced aggregation.What is the impact? The findings suggest that the A1 domain-derived peptide QDTT from CEACAM1 could serve as a potential basis for developing novel antiplatelet drugs. This peptide effectively limits platelet activation and aggregation without significantly prolonging bleeding time, indicating a promising approach to managing thrombosis and related disorders while minimizing bleeding risks.


Asunto(s)
Proteína CEACAM1 , Cloruros , Compuestos Férricos , Trombosis , Ratones , Animales , Glicoproteínas de Membrana Plaquetaria/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Agregación Plaquetaria , Plaquetas/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/metabolismo , Péptidos/farmacología , Colágeno/farmacología , Trombosis/metabolismo
9.
J Transl Med ; 22(1): 15, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172946

RESUMEN

Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa , Humanos , Femenino , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama/patología , Medicina de Precisión , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Mutación/genética , Fosfatidilinositol 3-Quinasa Clase I , Proteínas Proto-Oncogénicas c-akt/metabolismo
10.
Nucleus ; 15(1): 2296243, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38146123

RESUMEN

DNA double-strand break (DSB) is the most dangerous type of DNA damage, which may lead to cell death or oncogenic mutations. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two typical DSB repair mechanisms. Recently, many studies have revealed that liquid-liquid phase separation (LLPS) plays a pivotal role in DSB repair and response. Through LLPS, the crucial biomolecules are quickly recruited to damaged sites with a high concentration to ensure DNA repair is conducted quickly and efficiently, which facilitates DSB repair factors activating downstream proteins or transmitting signals. In addition, the dysregulation of the DSB repair factor's phase separation has been reported to promote the development of a variety of diseases. This review not only provides a comprehensive overview of the emerging roles of LLPS in the repair of DSB but also sheds light on the regulatory patterns of phase separation in relation to the DNA damage response (DDR).


Asunto(s)
Roturas del ADN de Doble Cadena , Separación de Fases , Reparación del ADN , Recombinación Homóloga , ADN/genética
12.
Rev. Bras. Ortop. (Online) ; 59(2): 160-171, 2024. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1565371

RESUMEN

Abstract Pain is the most common complaint reported to orthopedists in the outpatient clinic, emergency room, or booth. Numerous publications report the inadequate management of both acute and chronic pain by health professionals. This updated article aims to provide information about musculoskeletal pain, its classification, evaluation, diagnosis, and the multimodal therapeutic approach for each case. For acute pain, adequate control allows for earlier rehabilitation to work and reduces the rates of pain chronification. For chronic pain, the goal is to reduce its intensity and improve the quality of life. Currently, some procedures are increasingly used and aided by imaging tests for diagnostic and therapeutic purposes.


Resumo A dor é a queixa mais comum recebida pelo ortopedista no ambulatório e/ou emergência. Inúmeras publicações relatam o manejo inadequado tanto da dor aguda quanto da dor crônica pelos profissionais da saúde. O objetivo desse artigo de atualização é trazer informações sobre a dor musculoesquelética, sua classificação, avaliação, diagnóstico e abordagem terapêutica multimodal para cada situação. Desta maneira, nas dores agudas seu controle adequado possibilita um trabalho de reabilitação mais precoce, bem como diminui os índices de cronificação da dor. Nas dores crônicas sua abordagem além da diminuição de sua intensidade, visa também melhorar a qualidade de vida. Atualmente alguns procedimentos estão sendo cada vez mais utilizados com auxílio de aparato de imagem com objetivo diagnóstico e terapêutico.


Asunto(s)
Humanos , Dolor/clasificación , Dolor/diagnóstico , Dolor Agudo/clasificación , Dolor Musculoesquelético , Manejo del Dolor
13.
Int J Ophthalmol ; 16(11): 1838-1844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028522

RESUMEN

AIM: To evaluate the safety, effectiveness, and predictability of small incision lenticule extraction (SMILE) for the treatment of anisometropia, and to explore the personalized design scheme of SMILE in correcting adult myopia anisometropia based on the nomogram. METHODS: It's a prospective cohort study. Patients with anisometropic myopia of refractive difference ≥ 2.0 diopters (D) who underwent SMILE between September 2020 and March 2021 were enrolled. Clinical features and visual function were assessed preoperatively and at 1wk, 1, 3, and 6mo after the operation. The examination included tests for uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), refractive errors, effectiveness index (preoperative CDVA/postoperative UDVA), safety index (postoperative CDVA/preoperative CDVA), nomogram and stereoscopic function. Paired t-test, Wilcoxon signed-rank test and repeated-measures analyses of variance were used for continuous variables, and Pearson Chi-squared test was used for categorical variables. RESULTS: The study involved 45 consecutive patients (average age: 25.0±6.9y; 82 out of 90 eyes underwent SMILE, while 8 eyes were not operated). The average preoperative spherical equivalent (SE) was -4.74±0.22 D. Six months after surgery, the effectiveness index was 1.05±0.12, and the safety index was 1.09±0.11. Seventy eyes (85.4%) exhibited SE correction error within ±0.5 D. The percentage of eyes with Titmus stereoscopic function equal to or less than 200″ significantly increased from 55.6% preoperatively to 88.9% postoperatively (P<0.05). There was statistically significant difference between higher myopia eyes and contralateral eyes in average nomogram value/spherical refraction ratio. CONCLUSION: SMILE is safe, effective and predictable in correcting myopic anisometropia, and it improves stereoscopic visual function of anisometropia patients. The precise and individualized design of the nomogram is a vital element to ensure the balance of both eyes after SMILE.

14.
World J Diabetes ; 14(9): 1349-1368, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37771331

RESUMEN

BACKGROUND: Glycation is an important step in aging and oxidative stress, which can lead to endothelial dysfunction and cause severe damage to the eyes or kidneys of diabetics. Inhibition of the formation of advanced glycation end products (AGEs) and their cell toxicity can be a useful therapeutic strategy in the prevention of diabetic retinopathy (DR). Gardenia jasminoides Ellis (GJE) fruit is a selective inhibitor of AGEs. Genipin is an active compound of GJE fruit, which can be employed to treat diabetes. AIM: To confirm the effect of genipin, a vital component of GJE fruit, in preventing human retinal microvascular endothelial cells (hRMECs) from AGEs damage in DR, to investigate the effect of genipin in the down-regulation of AGEs expression, and to explore the role of the CHGA/UCP2/glucose transporter 1 (GLUT1) signal pathway in this process. METHODS: In vitro, cell viability was tested to determine the effects of different doses of glucose and genipin in hRMECs. Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry, immunofluorescence, wound healing assay, transwell assay, and tube-forming assay were used to detect the effect of genipin on hRMECs cultured in high glucose conditions. In vivo, streptozotocin (STZ) induced mice were used, and genipin was administered by intraocular injection (IOI). To explore the effect and mechanism of genipin in diabetic-induced retinal dysfunction, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) assays were performed to explore energy metabolism and oxidative stress damage in high glucose-induced hRMECs and STZ mouse retinas. Immunofluorescence and Western blot were used to investigate the expression of inflammatory cytokines [vascular endothelial growth factor (VEGF), SCG3, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-18, and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3 (NLRP3)]. The protein expression of the receptor of AGEs (RAGE) and the mitochondria-related signal molecules CHGA, GLUT1, and UCP2 in high glucose-induced hRMECs and STZ mouse retinas were measured and compared with the genipin-treated group. RESULTS: The results of CCK-8 and colony formation assay showed that genipin promoted cell viability in high glucose (30 mmol/L D-Glucose)-induced hRMECs, especially at a 0.4 µmol/L dose for 7 d. Flow cytometry results showed that high glucose can increase apoptosis rate by 30%, and genipin alleviated cell apoptosis in AGEs-induced hRMECs. A high glucose environment promoted ATP, ROS, MMP, and 2-NBDG levels, while genipin inhibited these phenotypic abnormalities in AGEs-induced hRMECs. Furthermore, genipin remarkably reduced the levels of the pro-inflammatory cytokines TNF-α, IL-1ß, IL-18, and NLRP3 and impeded the expression of VEGF and SCG3 in AGEs-damaged hRMECs. These results showed that genipin can reverse high glucose induced damage with regard to cell proliferation and apoptosis in vitro, while reducing energy metabolism, oxidative stress, and inflammatory injury caused by high glucose. In addition, ROS levels and glucose uptake levels were higher in the retina from the untreated eye than in the genipin-treated eye of STZ mice. The expression of inflammatory cytokines and pathway protein in the untreated eye compared with the genipin-treated eye was significantly increased, as measured by Western blot. These results showed that IOI of genipin reduced the expression of CHGA, UCP2, and GLUT1, maintained the retinal structure, and decreased ROS, glucose uptake, and inflammation levels in vivo. In addition, we found that SCG3 expression might have a higher sensitivity in DR than VEGF as a diagnostic marker at the protein level. CONCLUSION: Our study suggested that genipin ameliorates AGEs-induced hRMECs proliferation, apoptosis, energy metabolism, oxidative stress, and inflammatory injury, partially via the CHGA/UCP2/GLUT1 pathway. Control of advanced glycation by IOI of genipin may represent a strategy to prevent severe retinopathy and vision loss.

15.
PLoS One ; 18(8): e0290854, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37647293

RESUMEN

Water quality regulation is widely recognized as a highly effective strategy for disease prevention in the field of aquaculture, and it holds significant potential for the development of sustainable aquaculture. Herein, four water quality regulators, including potassium monopersulfate (KMPS), tetrakis hydroxymethyl phosphonium sulfate (THPS), bacillus subtilis (BS), and chitosan (CS), were added to the culture water of Oreochromis niloticus (GIFT tilapia) every seven days. Subsequently, the effects of these four water quality regulators on GIFT tilapia were comprehensively evaluated by measuring the water quality index of daily growth-related performance and immune indexes of GIFT tilapia. The findings indicated that implementing the four water quality regulators resulted in a decrease in the content of ammonia nitrogen, active phosphate, nitrite, total organic carbon (TOC), and chemical oxygen demand (COD) in the water. Additionally, these regulators were found to maintain dissolved oxygen (DO) levels and pH of the water effectively. Furthermore, using these regulators demonstrated positive effects on various physiological parameters of GIFT tilapia, including improvements in final body weight, weight gain rate (WGR), specific growth rate (SGR), condition factor (CF), feed conversion ratio (FCR), spleen index (SI), hepato-somatic index (HSI), immune cell count, the activity of antioxidant-related enzymes (Nitric oxide, NO and Superoxide dismutase, SOD), and mRNA expression levels of immunity-related factors (Tumor Necrosis Factor-alpha, TNF-α and Interleukin-1 beta, IL-1ß) in the liver and spleen. Notably, the most significant improvements were observed in the groups treated with the BS and CS water quality regulators. Moreover, BS and CS groups exhibited significantly higher serum levels of albumin (ALB) and total protein (TP) (P < 0.05), whereas the other indicators showed no significant difference (P > 0.05) compared to the control group. However, the KMPS and THPS groups of GIFT tilapia exhibited significantly higher serum levels of aspartate aminotransferase (AST), alanine transaminase (ALT), creatinine (CRE) and blood urea nitrogen (BUN) (P < 0.05), whereas they exhibited significantly decreased HSI (P < 0.05). In addition, the partially pathological observations revealed the presence of cell vacuolation, nuclear shrinkage, and pyknosis within the liver. In conclusion, these four water quality regulators, mainly BS and CS, could improve the growth performance and immunity of GIFT tilapia to varying degrees by regulating the water quality and then further increasing the expression levels of immune-related factors or the activity of antioxidant-related enzymes of GIFT tilapia. On the contrary, the prolonged use of KMPS and THPS may gradually diminish their growth-enhancing properties and potentially hinder the growth of GIFT tilapia.


Asunto(s)
Cíclidos , Tilapia , Animales , Antioxidantes , Calidad del Agua , Peso Corporal , Bacillus subtilis
16.
Nucleic Acids Res ; 51(18): 9733-9747, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638744

RESUMEN

RAP80 has been characterized as a component of the BRCA1-A complex and is responsible for the recruitment of BRCA1 to DNA double-strand breaks (DSBs). However, we and others found that the recruitment of RAP80 and BRCA1 were not absolutely temporally synchronized, indicating that other mechanisms, apart from physical interaction, might be implicated. Recently, liquid-liquid phase separation (LLPS) has been characterized as a novel mechanism for the organization of key signaling molecules to drive their particular cellular functions. Here, we characterized that RAP80 LLPS at DSB was required for RAP80-mediated BRCA1 recruitment. Both cellular and in vitro experiments showed that RAP80 phase separated at DSB, which was ascribed to a highly disordered region (IDR) at its N-terminal. Meanwhile, the Lys63-linked poly-ubiquitin chains that quickly formed after DSBs occur, strongly enhanced RAP80 phase separation and were responsible for the induction of RAP80 condensation at the DSB site. Most importantly, abolishing the condensation of RAP80 significantly suppressed the formation of BRCA1 foci, encovering a pivotal role of RAP80 condensates in BRCA1 recruitment and radiosensitivity. Together, our study disclosed a new mechanism underlying RAP80-mediated BRCA1 recruitment, which provided new insight into the role of phase separation in DSB repair.

17.
Int J Infect Dis ; 135: 67-69, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567555

RESUMEN

Sparganosis is a rare parasitic infection caused by plerocercoid tapeworm larvae. We described a case of a 27-year-old man presenting with numbness in both legs and masses in the right lung and spine, initially thought to have spinal metastasis from lung cancer. However, after pathological and parasitological examinations, the patient was found to have spinal sparganosis, likely due to a history of consuming raw frogs. The patient was successfully treated with praziquantel, resulting in the recovery of muscle strength in his legs. This case highlights the importance of considering spinal sparganosis as a differential diagnosis in patients with spinal masses, especially those with a history of consuming raw or undercooked frogs. Accurate diagnosis and early treatment are crucial for managing this infection.

18.
Hepatology ; 77(1): 48-64, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35262957

RESUMEN

BACKGROUND AND AIMS: Type 3 innate lymphoid cells (ILC3s) are essential for host defense against infection and tissue homeostasis. However, their role in the development of HCC has not been adequately confirmed. In this study, we investigated the immunomodulatory role of short-chain fatty acids (SCFAs) derived from intestinal microbiota in ILC3 regulation. APPROACH AND RESULTS: We report that Lactobacillus reuteri was markedly reduced in the gut microbiota of mice with HCC, accompanied by decreased SCFA levels, especially acetate. Additionally, transplantation of fecal bacteria from wild-type mice or L. reuteri could promote an anticancer effect, elevate acetate levels, and reduce IL-17A secretion in mice with HCC. Mechanistically, acetate reduced the production of IL-17A in hepatic ILC3s by inhibiting histone deacetylase activity, increasing the acetylation of SRY (sex-determining region Y)-box transcription factor 13 (Sox13) at site K30, and decreasing expression of Sox13. Moreover, the combination of acetate with programmed death 1/programmed death ligand 1 blockade significantly enhanced antitumor immunity. Consistently, tumor-infiltrating ILC3s correlated with negative prognosis in patients with HCC, which could be functionally mediated by acetate. CONCLUSIONS: These findings suggested that modifying bacteria, changing SCFAs, reducing IL-17A-producing ILC3 infiltration, and combining with immune checkpoint inhibitors will contribute to the clinical treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Ratones , Animales , Interleucina-17 , Inmunidad Innata , Carcinoma Hepatocelular/metabolismo , Linfocitos , Neoplasias Hepáticas/metabolismo , Ácidos Grasos Volátiles/metabolismo , Acetatos
20.
Cell Death Discov ; 8(1): 436, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316314

RESUMEN

Aberrant DNA damage response (DDR) axis remains the major molecular mechanism for tumor radio-resistance. We recently characterized liquid-liquid phase separation (LLPS) as an essential mechanism of DDR, and identified several key DDR factors as potential LLPS proteins, including nucleolar protein NOP53. In this study, we found that NOP53 formed highly concentrated droplets in vivo and in vitro, which had liquid-like properties including the fusion of adjacent condensates, rapid fluorescence recovery after photobleaching and the sensitivity to 1,6-hexanediol. Moreover, the intrinsically disordered region 1 (IDR1) is required for NOP53 phase separation. In addition, multivalent-arginine-rich linear motifs (M-R motifs), which are enriched in NOP53, were essential for its nucleolar localization, but were dispensable for the LLPS of NOP53. Functionally, NOP53 silencing diminished tumor cell growth, and significantly sensitized colorectal cancer (CRC) cells to radiotherapy. Mechanically, NOP53 negatively regulated p53 pathway in CRC cells treated with or without radiation. Importantly, data from clinical samples confirmed a correlation between NOP53 expression and tumor radio-resistance. Together, these results indicate an important role of NOP53 in radio-resistance, and provide a potential target for tumor radio-sensitization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA