Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Pharmacol ; 13: 830328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242040

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers worldwide but has limited available therapeutic methods; therefore, there is a need to develop highly efficient prevention and treatment strategies. Here, we investigated the anti-cancer activity of ß-elemonic acid (EA) in CRC in vitro and in vivo. Our results showed that EA inhibited cell proliferation and migration in the CRC cell lines SW480 and HCT116. Moreover, EA significantly suppressed the growth of transplanted colorectal tumors in nude mice. Interestingly, high-throughput tandem mass tag (TMT)-based quantitative proteomics indicated that EA mainly targets tumor mitochondria and attenuates the translation of 54 mitochondrial ribosome proteins, many of which are discovered significantly upregulated in clinical CRC patients. More interestingly, EA at a low concentration (lower than 15 µg/ml) repressed the cell cycle by downregulating CDK1, CDK6, and CDC20, whereas at a high concentration (higher than 15 µg/ml), caused a non-apoptotic cell death-ferroptosis via downregulating ferritin (FTL) and upregulating transferrin (TF), ferroxidase (CP), and acyl-CoA synthetase long-chain family member 4 (ACSL4). This is the first report on the panoramic molecular mechanism of EA against CRC, which would make great contributions to developing a novel drug for colorectal cancer therapy.

2.
Front Plant Sci ; 12: 663730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354716

RESUMEN

Commercial cultivation of the medicinal plant Atractylodes lancea is significantly restricted by low survival rates and reduced yields. Intercropping can reasonably coordinate interspecific interactions, effectively utilize environmental resources, and increase survival and yield. We conducted a field experiment from 2014 to 2016 to analyze the advantages and effects of intercropping on A. lancea survival, growth traits, individual volatile oil content, and total volatile oil content. In addition to A. lancea monoculture (AL), five intercropping combinations were planted: Zea mays L. (ZM) + A. lancea, Tagetes erecta L. (TE) + A. lancea, Calendula officinalis L. (CO) + A. lancea, Glycine max (Linn.) Merr. (GM) + A. lancea, and Polygonum hydropiper L. (PH) + A. lancea. The survival and average rhizome weight of A. lancea was higher in the ZM, CO, and TE treatments than in the monoculture treatment, and the average plant height was higher in all intercropping treatments than in the monoculture. The volatile oil content of A. lancea from the ZM and CO treatments was significantly improved relative to that of monoculture plants. The volatile oil harvest was higher in the ZM, CO, and TE treatments than in the monoculture. We conclude that intercropping is an effective way to increase the survival and yield of A. lancea. Furthermore, intercropping with ZM, CO, and TE increases the harvest of four volatile oils from A. lancea.

3.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2182-2189, 2021 May.
Artículo en Chino | MEDLINE | ID: mdl-34047119

RESUMEN

Carboxyl CoA ligases(CCLs) is an important branch of adenylate synthetase gene family, which mainly has two-step catalytic reactions. Firstly, in the presence of adenosine triphosphate, it can catalyze the pyrophosphorylation of carboxylateswith diffe-rent structures to form corresponding acyl adenosine monophosphate intermediates. Secondly, adenosine monophosphate was replaced by free electrons in the mercaptan group of enzyme A or other acyl receptors by nucleophilic attack to form thioesters. In this study, on the basis of the transcriptome database of Arnebia euchroma, two genes were selected, named AeCCL5(XP_019237476.1) and AeCCL7(XP_019237476.1). Bioinformatics analysis showed that their relative molecular weights were 60.569 kDa and 60.928 kDa, theoretical PI were 8.59 and 8.92, respectively. They both have transmembrane domains but without signal peptide. By multiple sequence alignment and phylogenetic tree analysis, we found that the similarity between AeCCLs and other plant homologous proteins was not high, and the substrate binding sites of AeCCLs were not highly conserved. The reasons might be that the sequence and structure need to adapt to the changes of new substrates in the process of evolution. In this study, the full-length of AeCCL5 and AecCCL7 were cloned into the expression vector pCDFDuet-1. The proteins of AeCCL5 and AeCCL7 with His-tag were expressed in Escherichia coli. The proteins of AeCCL5 and AeCCL7 were purified by nickel column. In vitro enzymatic reactions proved that both AeCCL5 and AeCCL7 can participate in the upstream phenylpropane pathway of shikonin biosynthesisby catalyzing 4-coumaric acid to produce 4-coumarin-CoA, and then to synthesis p-hydroxybenzoic acid, which is an important precursor of shikonin biosynthesis in A. euchroma.


Asunto(s)
Boraginaceae , Coenzima A Ligasas , Boraginaceae/genética , Clonación Molecular , Coenzima A , Coenzima A Ligasas/genética , Ligasas , Filogenia
4.
Zhongguo Zhong Yao Za Zhi ; 46(1): 86-93, 2021 Jan.
Artículo en Chino | MEDLINE | ID: mdl-33645056

RESUMEN

Caffeic acid and its oligomers are the main water-soluble active constituents of the traditional Chinese medicine(TCM) Arnebiae Radix. These compounds possess multiple biological activities such as antimicrobial, antioxidant, cardiovascular protective, liver protective, anti-liver fibrosis, antiviral and anticancer activities. The phenylpropanoid pathway in plants is responsible for the biosynthesis of caffeic acid and its oligomers. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. In view of the important role played by de-glycosylation in the regulation of phenylpropanoid homeostasis, the biosynthesis of caffeic acid and its oligomers are supposed to be under the control of relative UDP-glycosyltransferases(UGTs). Through the data mining of Arnebia euchroma transcriptome, we cloned 15 full-length putative UGT genes. After recombinant expression using the prokaryotic system, the crude enzyme solution of the putative UGTs was examined for the glycosylation activities towards caffeic acid and rosmarinic acid in vitro. AeUGT_01, AeUGT_02, AeUGT_03, AeUGT_04 and AeUGT_10 were able to glycosylate caffeic acid and/or rosmarinic acid resulting in different mono-and/or di-glycosylated products in the UPLC-MS analyses. The characterized UGTs were distantly related to each other and divided into different clades of the phylogenetic tree. Based on the observation that each characterized UGT exhibited substrate or catalytic similarity with the members in their own clade, we supposed the glycosylation abilities towards caffeic acid and/or rosmarinic acid were evolved independently in different clades. The identification of caffeic acid and rosmarinic acid UGTs from A. euchroma could lead to deeper understanding of the caffeic acid oligomers biosynthesis and its regulation. Furthermore, these UGTs might be used for regiospecific glycosylation of caffeic acid and rosmarinic acid to produce bioactive compounds for potential therapeutic applications.


Asunto(s)
Boraginaceae , Glicosiltransferasas , Boraginaceae/genética , Ácidos Cafeicos , Cromatografía Liquida , Cinamatos , Clonación Molecular , Depsidos , Glicosiltransferasas/genética , Filogenia , Espectrometría de Masas en Tándem , Ácido Rosmarínico
5.
Food Chem ; 343: 128506, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33153811

RESUMEN

In this study, stable isotopes and multi-element signatures combined with chemometrics were used to distinguish conventional and organic Chinese yams based on field trials. Four light stable isotopes δD, δ13C, δ15N, δ18O, and 20 elements (e.g. Li, Na, Mn) were determined, then evaluated using significance analysis and correlation analysis, and modeling of various chemometrics methods. Consequently, the RandomForest model showed the best performance with AUC value of 0.972 and predictive accuracy of 97.3%, and Mn, Cr, Se, Na, δD, As, and δ15N were screened as significant variables. Moreover, many chemical components and antioxidant activity of yam samples were determined spectrophotometrically. The results indicated that organic yams had advantages in secondary metabolites such as polyphenol, flavonoid and saponin; conversely, conventional samples had more primary metabolites like protein and amino acids. Above all, this work provides a beneficial case in the authentication and quality evaluation of conventional and organic yams.


Asunto(s)
Dioscorea/química , Dioscorea/crecimiento & desarrollo , Fraude/prevención & control , Isótopos/química , Aprendizaje Automático , Agricultura Orgánica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA