Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Adv Res ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39168245

RESUMEN

INTRODUCTION: Patients with mantle cell lymphoma (MCL) frequently develop resistance to ibrutinib. Lymphoma-associated macrophages (LAMs) may play a causal role in this resistance but remain underexplored in current literature. OBJECTIVES: To elucidate the role of LAMs in mediating ibrutinib resistance in MCL. METHODS: We investigated macrophage polarization through multiparameter flow cytometry (MPFC) using antibodies against CD206 and CD86 in blood and tissue samples from patients with MCL, both resistant and sensitive to ibrutinib. Subsequently, we developed an in vitro co-culture model utilizing MCL cell lines to identify cytokines associated with ibrutinib resistance and macrophage M2 polarization. The mechanisms underlying resistance were examined using MPFC, RNA sequencing, and Western blot analysis. Additionally, we assessed whether SB225002, a CXCR2 inhibitor, could reverse ibrutinib resistance through CCK-8 and caspase-3 assays, as well as in a mouse xenograft model involving an ibrutinib-resistant MCL cell line. RESULTS: In patients exhibiting ibrutinib resistance, the ratio of M2 to M1 LAMs was significantly higher compared to sensitive patients. In co-cultures of LAMs and MCL cells, the percentage of M2 macrophages, the IC50 value for ibrutinib, and the concentrations of IL-8 and CXCL5 were significantly elevated. Mechanistically, CXCL5 secreted by LAMs interacted with the CXCR2 on MCL cells, leading to the activation of the Akt, p38, and STAT3 signaling pathways in the presence of ibrutinib; this activity was diminished upon blockade of the CXCL5/CXCR2 axis. The combination of SB225002 and ibrutinib significantly enhanced MCL cell apoptosis, suppressed lymphoma growth in the xenograft model, and reprogrammed macrophage phenotype compared to treatment with ibrutinib alone. CONCLUSION: Our data indicate that M2-polarized LAMs are associated with ibrutinib resistance in a model of MCL, and that a CXCR2 inhibitor can reverse this resistance. These findings suggest a potential new therapeutic strategy.

2.
Int Immunopharmacol ; 139: 112693, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024752

RESUMEN

BACKGROUND: The therapeutic potential of adipose-derived mesenchymal stromal cells (AMSCs) in the treatment of intestinal fibrosis occured in patients with Crohn's disease (CD) remains unclear. Tumor necrosis factor-stimulated gene 6 (TSG6) protein plays a critical role in inflammation regulation and tissue repair. This study aimed to determine if AMSCs attenuate intestinal fibrosis by secreting paracrine TSG6 protein and explore the underlying mechanisms. METHODS: Two murine models for intestinal fibrosis were established using 2,4,6-trinitrobenzene sulfonic acid in BALB/c mice and dextran sulfate sodium in C57BL/6 mice. Primary human fibroblasts and CCD-18co cells were incubated with transforming growth factor (TGF)-ß1 to build two fibrosis cell models in vitro. RESULTS: Intraperitoneally administered AMSCs attenuated intestinal fibrosis in the two murine models, as evidenced by significant alleviation of colon shortening, collagen protein deposits, and submucosal thickening, and also decrease in the endoscopic and fibrosis scores (P < 0.001). Although intraperitoneally injected AMSCs did not migrate to the colon lesions, high levels of TSG6 expression and secretion were noticed both in vivo and in vitro. Similar to the role of AMSCs, injection of recombinant human TSG6 attenuated intestinal fibrosis in the mouse models, which was not observed with the administration of AMSCs with TSG6 knockdown or TSG6 neutralizing antibody. Mechanistically, TSG6 alleviates TGF-ß1-stimulated upregulation of α-smooth muscle actin (αSMA) and collagen I by inhibiting Smad2 phosphorylation. Furthermore, the expression of TSG6 is lower in intestinal fibrosis tissue of patients with Crohn's disease and can reduce pro-fibrotic protein (αSMA) secretion from primary ileal fibrotic tissue. CONCLUSIONS: AMSCs attenuate intestinal fibrosis by secreting paracrine TSG6 protein, which inhibits Smad2 phosphorylation. TSG6, a novel anti-fibrotic factor, could potentially improve intestinal fibrosis treatments.


Asunto(s)
Moléculas de Adhesión Celular , Enfermedad de Crohn , Modelos Animales de Enfermedad , Fibrosis , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína Smad2 , Animales , Humanos , Células Madre Mesenquimatosas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Enfermedad de Crohn/terapia , Enfermedad de Crohn/patología , Enfermedad de Crohn/metabolismo , Ratones , Proteína Smad2/metabolismo , Masculino , Sulfato de Dextran , Ácido Trinitrobencenosulfónico , Tejido Adiposo/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Colon/patología , Colon/metabolismo , Colitis/inducido químicamente , Colitis/terapia , Colitis/patología
3.
Infect Agent Cancer ; 19(1): 25, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802946

RESUMEN

This paper introduces two cases of multiple myeloma, COVID-19 infection during autologous stem cell transplantation, the treatment process, and different results of the two patients, which provides a reference for how to carry out ASCT safely during the COVID-19 normalization stage.

4.
Leukemia ; 38(7): 1553-1563, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783159

RESUMEN

Immunotherapy with programmed cell death 1 ligand 1 (PD-L1) blockade was effective in patients with NK/T-cell lymphoma. In addition to PD-L1, indoleamine 2,3-dioxygenase-1 (IDO1) is one of the most promising immunotherapeutic targets. High proportions of PD-L1 and IDO1 proteins were observed by immunohistochemistry (IHC) from 230 newly diagnosed patients with NK/T lymphoma with tissue samples from three cancer centers and were associated with poor overall survival (OS) in patients with NK/T lymphoma. Importantly, the coexpression of PD-L1 and IDO1 was related to poor OS and short restricted mean survival time in patients with NK/T lymphoma and was an independent prognostic factor in the training cohorts, and which was also validated in 58 NK/T lymphoma patients (GSE90597). Moreover, a nomogram model constructed with PD-L1 and IDO1 expression together with age could provide concise and precise predictions of OS rates and median survival time. The high-risk group in the nomogram model had a positive correlation with CD4 + T-cell infiltration in the validation cohort, as did the immunosuppressive factor level. Therefore, high PD-L1 and IDO1 expression was associated with poor OS in patients with NK/T lymphoma. PD-L1 and IDO1 might be potential targets for future immune checkpoint blockade (ICB) therapy for NK/T lymphoma.


Asunto(s)
Antígeno B7-H1 , Biomarcadores de Tumor , Indolamina-Pirrol 2,3,-Dioxigenasa , Linfoma Extranodal de Células NK-T , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Antígeno B7-H1/metabolismo , Masculino , Femenino , Linfoma Extranodal de Células NK-T/mortalidad , Linfoma Extranodal de Células NK-T/metabolismo , Linfoma Extranodal de Células NK-T/patología , Linfoma Extranodal de Células NK-T/tratamiento farmacológico , Persona de Mediana Edad , Pronóstico , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Tasa de Supervivencia , Adulto Joven , Nomogramas , Estudios de Seguimiento , Anciano de 80 o más Años
5.
Exp Ther Med ; 27(1): 15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38125352

RESUMEN

The ovary is an essential reproductive organ in the female organism and its development seriously affects the physical and mental health of female patients. Ovarian diseases include ovarian cancer, premature ovarian insufficiency (POI) and polycystic ovary syndrome (PCOS). Women should pay attention to the most effective treatments for this condition because it is one of the most prevalent gynecological illnesses at present. Extracellular vesicles (EVs), which are smaller vesicles that mediate the exchange of cellular information, include the three categories of exosomes, microvesicles and apoptotic bodies. They are able to transport proteins, RNA and other substances to adjacent or distal cells, thus allowing cellular and tissue homeostasis to be maintained. Numerous previous studies have revealed that EVs are crucial for the treatment of ovarian diseases. They are known to transport its contents to ovarian cancer cells as well as other ovarian cells such as granulosa cells, affecting the development of ovarian disease processes. Therefore, this extracellular vesicle may be involved as a target in the therapeutic process of ovarian disease and may have great potential in the treatment of ovarian disease. In the present review, the role of EVs in the development of three ovarian diseases, including ovarian cancer, POI and PCOS, was mainly summarizes. It is expected that this will provide some theoretical support for the treatment of ovarian disease.

6.
J Cancer Res Clin Oncol ; 149(20): 17881-17896, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37947869

RESUMEN

PURPOSE: Peritoneal metastasis in gastric cancer (GC) is a late-stage condition with a poor prognosis. Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is a popular treatment for peritoneal metastases. Here, we aim to investigate the real-world application and efficacy of HIPEC alone for GC patients with synchronous peritoneal metastases. METHODS: We conducted a retrospective analysis on GC patients with synchronous peritoneal metastasis at the Sixth Affiliated Hospital of Sun Yat-sen University between January 2011 and December 2022. Survival analyses and Cox regression models were performed based on overall survival (OS) and cancer-specific survival (CSS), and subgroup analysis was used to determine the prognostic value of HIPEC across different treatment. RESULTS: We enrolled 250 patients, of whom 120 (48%) received HIPEC while 130 (52%) did not. HIPEC showed no survival benefit for GC patients (P = 0.220 for OS and P = 0.370 for CSS). However, subgroup analysis found that HIPEC can only improve OS and CSS when combined with primary tumor resection (P = 0.034 for OS and P = 0.036 for CSS). Moreover, survival analyses also demonstrated that HIPEC independently improved OS (HR for OS = 0.58, 95% CI 0.37-0.92, P = 0.020) and CSS (HR for CSS = 0.58, 95% CI 0.37-0.93, P = 0.024) for patients who underwent primary site resection, but not for those who did not. CONCLUSION: HIPEC can improve survival in GC patients with synchronous peritoneal metastases who have primary tumor resection, but not in those without primary tumor resection.


Asunto(s)
Neoplasias Colorrectales , Hipertermia Inducida , Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Pronóstico , Estudios Retrospectivos , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/secundario , Quimioterapia Intraperitoneal Hipertérmica , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Tasa de Supervivencia , Neoplasias Colorrectales/patología
7.
World J Surg Oncol ; 21(1): 319, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821872

RESUMEN

BACKGROUND: With the aging of the population, the burden of elderly gastric cancer (EGC) increases worldwide. However, there is no consensus on the definition of EGC and the efficacy of adjuvant chemotherapy in patients with stage II EGC. Here, we investigated the effectiveness of adjuvant chemotherapy in defined EGC patients. METHODS: We enrolled 5762 gastric cancer patients of three independent cohorts from the Sixth Affiliated Hospital of Sun Yat-sen University (local), the Surveillance, Epidemiology, and End Results (SEER), and the Asian Cancer Research Group (ACRG). The optimal age cutoff for EGC was determined using the K-adaptive partitioning algorithm. The defined EGC group and the efficacy of adjuvant chemotherapy for them were confirmed by Cox regression and Kaplan-Meier survival analyses. Furthermore, gene set variation analyses (GSVA) were performed to reveal pathway enrichment between groups. RESULTS: The optimal age partition value for EGC patients was 75. In the local, SEER, and ACRG cohorts, the EGC group exhibited significantly worse overall survival and cancer-specific survival than the non-EGC group (P < 0.05) and was an independent risk factor. Stratified analyses based on chemotherapy showed that EGC patients derived little benefit from adjuvant chemotherapy. Furthermore, GSVA analysis revealed the activation of DNA repair-related pathways and downregulation of the p53 pathway, which may partially contribute to the observed findings. CONCLUSION: In this retrospective, international multi-center study, 75 years old was identified as the optimal age cutoff for EGC definition, and adjuvant chemotherapy proved to be unbeneficial for stage II EGC patients.


Asunto(s)
Neoplasias Gástricas , Humanos , Anciano , Neoplasias Gástricas/patología , Estudios Retrospectivos , Factores de Riesgo , Estimación de Kaplan-Meier , Quimioterapia Adyuvante , Estadificación de Neoplasias
8.
J Colloid Interface Sci ; 650(Pt A): 350-357, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37413869

RESUMEN

Bimetallic two-dimensional (2D) nanomaterials are widely used in electrocatalysis owing to their unique physicochemical properties, while trimetallic 2D materials of porous structures with large surface area are rarely reported. In this paper, a one-pot hydrothermal synthesis of ternary ultra-thin PdPtNi nanosheets is developed. By adjusting the volume ratio of the mixed solvents, PdPtNi with porous nanosheets (PNSs) and ultrathin nanosheets (UNSs) was prepared. The growth mechanism of PNSs was investigated through a series of control experiments. Notably, thanks to the high atom utilization efficiency and fast electron transfer, the PdPtNi PNSs have remarkable activity of methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The mass activities of the well-tuned PdPtNi PNSs for MOR and EOR were 6.21 A mg-1 and 5.12 A mg-1, respectively, much higher than those of commercial Pt/C and Pd/C. In addition, after durability test, the PdPtNi PNSs exhibited desirable stability with the highest retained current density. Therefore, this work provides a significant guidance for designing and synthesizing a new 2D material with excellent catalytic performance toward direct fuel cells applications.

9.
J Transl Med ; 21(1): 399, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337244

RESUMEN

BACKGROUND: Bone marrow metastasis (BMM) is underestimated in gastric cancer (GC). GC with BMM frequently complicate critical hematological abnormalities like diffused intravascular coagulation and microangiopathic hemolytic anemia, which constitute a highly aggressive GC (HAGC) subtype. HAGC present a very poor prognosis with peculiar clinical and pathological features when compared with not otherwise specified advanced GC (NAGC). But the molecular mechanisms underlying BMM from GC remain rudimentary. METHODS: The transcriptomic difference between HAGC and NAGC were analyzed. Genes that were specifically upregulated in HAGC were identified, and their effect on cell migration and invasion was studied. The function of ACTN2 gene were confirmed by GC cell lines, bone-metastatic animal model and patients' tissues. Furthermore, the molecular mechanism of ACTN2 derived-BMM was explored by multiple immunofluorescence staining, western blot, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS: We elucidated the key mechanisms of BMM depending on the transcriptomic difference between HAGC and NAGC. Five genes specifically upregulated in HAGC were assessed their effect on cell migration and invasion. The ACTN2 gene encoding protein α-Actinin-2 was detected enhanced the metastatic capability and induced BMM of GC cells in mouse models. Mechanically, α-Actinin-2 was involved in filopodia formation where it promoted the Actin filament cross-linking by replacing α-Actinin-1 to form α-Actinin-2:α-Actinin-4 complexes in GC cells. Moreover, NF-κB subunit RelA and α-Actinin-2 formed heterotrimers in the nuclei of GC cells. As a direct target of RelA:α-Actinin-2 heterotrimers, the ACTN2 gene was a positive auto-regulatory loop for α-Actinin-2 expression. CONCLUSIONS: We demonstrated a link between filopodia, BMM and ACTN2 activation, where a feedforward activation loop between ACTN2 and RelA is established via actin in response to distant metastasis. Given the novel filopodia formation function and the new mechanism of BMM in GC, we propose ACTN2 as a druggable molecular vulnerability that may provide potential therapeutic benefit against BMM of GC.


Asunto(s)
Actinina , Neoplasias de la Médula Ósea , Neoplasias Gástricas , Animales , Ratones , Actinina/genética , Actinina/metabolismo , Línea Celular Tumoral , FN-kappa B/metabolismo , Seudópodos/metabolismo , Seudópodos/patología , Neoplasias Gástricas/patología
10.
J Hazard Mater ; 440: 129773, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988494

RESUMEN

Environmental behavior and ecotoxicity of microplastics (MPs) are significantly influenced by the omnipresent self-assembly of microbial extracellular polymeric substances (EPS) on them. However, mechanisms of EPS self-assembly onto MPs at nanoscale resolution and effects of aging are unclear. For the first time, temporospatial nano-heterogeneity of self-assembly of EPS onto fresh and one-year aged polypropylene (PP) MPs were investigated by atomic-force-microscopy-infrared-spectroscopy (AFM-IR). Natural aging caused high degree nanoscale fragmentation of MPs physically and chemically. Self-assembly of EPS on MPs was aging-dependent. Polysaccharides were assembled on MP surface faster than proteins. Initially, regardless of the fresh or aged MPs, polysaccharides and proteins, with the former being predominant, were successively and separately assembled to different nanospaces because of their competition for binding sites. More and more proteins and polysaccharides were superimposed on each other with assembly time due to intermolecular forces. The nanochemical textural analysis showed that the nano-heterogeneity of EPS assembly to MPs was clearly correlated with the aging-induced nanochemical and nanomechanical heterogeneity of MP surface. The spontaneous self-assembly of EPS with temporospatial nano-heterogeneity on MPs have multiple impacts on behavior, ecotoxicity and fate of MPs and their associated pollutants as well as other key ecological processes in aquatic environment.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Contaminantes Ambientales/análisis , Matriz Extracelular de Sustancias Poliméricas/química , Microplásticos/toxicidad , Plásticos , Polipropilenos , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
12.
Front Oncol ; 12: 796738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141162

RESUMEN

Patients with extranodal natural killer/T-cell lymphoma (ENKTL), nasal type are benefit from peg-asparaginase, gemcitabine, and methotrexate. Therefore, we conducted a prospective phase II trial using a combination of these drugs as GAD-M regimen in naïve ENKTL patients, simultaneously, explored the combinational mechanism. The GAD-M regimen was administered for 6 cycles sandwiched by radiotherapy for stage I/II and 6 cycles for stage III/IV patients. After 6 cycles, the overall response rate of 36 patients was 91.6%, and the complete remission rate increased to 83.3%. The 3-year progression-free survival (PFS) and overall survival (OS) rates were 74.8% and 77.8%, respectively. The 5-year PFS and OS were 68.3% and 77.8%. No patient suffered from the central nervous system (CNS) relapse. Most patients experienced recoverable liver dysfunction and anemia in this study. The plasma MTX concentration ratio at 12 to 24 hr during the first cycle could be an early predictor of outcomes in ENKTL (PFS, P=0.005; OS, P=0.002). Additionally, we found that high dose MTX (HD-MTX) and gemcitabine had the synergistic effect of ENKTL cell in vitro. Mechanistically, we demonstrated that the combination could lead to obviously apoptosis in ENKTL cell with extremely release of reactive oxygen spices (ROS), which mediated by endoplasmic reticulum stress. In conclusion, the GAD-M regimen could be a new choice to newly diagnosed ENKTL, especially for stage I/II patients. Furthermore, our results showed the synergy effect of HD-MTX with gemcitabine in ENKTL. CLINICAL TRIAL REGISTRATION: This trial was registered at www.clinicaltrials.gov as #NCT01991158.

14.
Front Cell Infect Microbiol ; 11: 734750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858869

RESUMEN

The biological functions of growth factor, such as granulins, have been explored in parasites, and we elucidated that Clonorchis sinensis granulin (CsGRN) promoted the metastasis of hepatocellular carcinoma in our previous study. However, it is still unclear for the malignant transformation role of CsGRN in normal human hepatocytes. In this study, by transfecting pEGFP-C1-CsGRN eukaryotic expression plasmid, a cell line with stable overexpression of CsGRN in normal hepatocyte (LO2-GRN cells) was constructed. The effects on cell proliferation were detected by carrying out cell counting kit-8 (CCK8) assay and colony formation assay. Additionally, we conducted flow cytometry analysis to determine whether the proliferation of CsGRN was due to cell cycle arrest. Subsequently, the migration ability and the invasion ability of LO2-GRN cells were evaluated through wound-healing assay and transwell assay. Meanwhile, the levels of the markers of RAS/MAPK/ERK and PI3K/Akt signaling pathways activation in LO2-GRN cells were assessed by quantitative RT-PCR and Western blot. Our results indicated that CsGRN promoted the proliferation of LO2 cells by regulating the expression of cell-cycle-related genes. Moreover, the overexpression of CsGRN regulates malignant metastasis of liver cells by inducing the upregulation of epithelial-mesenchymal transition (EMT) marker proteins. Furthermore, both mRNA and protein expression levels of p-EGFR, RAS, p-ERK, p-AKT, p-PI3K, and p-braf have been enhanced by CsGRN. These results showed that CsGRN promoted the malignant transformation of hepatocytes by regulating epidermal growth factor receptor (EGFR)-mediated RAS/MAPK/ERK and PI3K/Akt signaling pathways, which suggested that CsGRN could serve as a novel oncoprotein during Clonorchis sinensis-associated malignant transformation of hepatocytes.


Asunto(s)
Clonorchis sinensis , Neoplasias Hepáticas , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Clonorchis sinensis/genética , Clonorchis sinensis/metabolismo , Receptores ErbB , Granulinas , Hepatocitos/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
15.
Hematol Oncol ; 39(5): 625-638, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34543472

RESUMEN

Primary central nervous system lymphoma (PCNSL) is an aggressive and rare malignancy with poor prognosis. However, there are no reliable prognostic biomarkers for PCNSL in clinical practice. Here, we aimed to identify a reliable prognostic biomarker for predicting the survival of PCNSL patients. In this study, multiplex immunofluorescence and digital imaging analysis were used to characterize tumor-associated macrophages (TAMs) immunophenotypes and the expression of programmed cell death ligand 1 on TAMs, with regard to prognosis from diagnostic tumor tissue samples of 59 PCNSL patients. We found that the M2-to-M1 ratio was a more reliable prognostic biomarker for PCNSL than M1-like or M2-like macrophage infiltration. In addition, the combination of programmed death-ligand 1 (PD-L1) expression on TAMs and the M2-to-M1 ratio in PCNSL demonstrated improved performance in prognostic discrimination than PD-L1-positive TAMs or M2-to-M1 ratio. To validate the prognostic significance of the combined TAMs associated biomarkers, they were integrated into the International Extranodal Lymphoma Study Group (IELSG) index and termed as IELSG-M index. Kaplan-Meier plots showed that the IELSG-M index could discriminate patients into low-, intermediate- or high-risk subgroups, better than IELSG, in terms of prognosis. The areas under the receiver operating characteristic curves of IELSG-M was 0.844 for overall survival; superior to the IELSG model (0.580). Taken together, this study's findings showed that the combination of PD-L1 on TAMs and the M2-to-M1 ratio could be strong prognostic predictive biomarkers for PCNSL and the IELSG-M index had improved prognostic significance than the IELSG index.


Asunto(s)
Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/análisis , Neoplasias del Sistema Nervioso Central/mortalidad , Linfoma/mortalidad , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Neoplasias del Sistema Nervioso Central/inmunología , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Femenino , Estudios de Seguimiento , Humanos , Linfoma/inmunología , Linfoma/metabolismo , Linfoma/patología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
16.
J Exp Clin Cancer Res ; 40(1): 149, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931075

RESUMEN

BACKGROUND: Radiotherapy is a conventional and effective local treatment for breast cancer. However, residual or recurrent tumors appears frequently because of radioresistance. Novel predictive marker and the potential therapeutic targets of breast cancer radioresistance needs to be investigated. METHODS: In this study, we screened all 10 asparagine-linked glycosylation (ALG) members in breast cancer patients' samples by RT-PCR. Cell viability after irradiation (IR) was determined by CCK-8 assay and flow cytometry. The radiosensitivity of cell lines with different ALG3 expression was determined with the colony formation assay by fitting the multi-target single hit model to the surviving fractions. Cancer stem-like traits were assessed by RT-PCR, Western blot, and flow cytometry. The mechanisms of ALG3 influencing radiosensitivity was detected by Western blot and immunoprecipitation. And the effect of ALG3 on tumor growth after IR was verified in an orthotopic xenograft tumor models. The association of ALG3 with prognosis of breast cancer patients was confirmed by immunohistochemistry. RESULTS: ALG3 was the most significantly overexpressing gene among ALG family in radioresistant breast cancer tissue. Overexpression of ALG3 predicted poor clinicopathological characteristics and overall survival (OS), and early local recurrence-free survival (LRFS) in breast cancer patients. Upregulating ALG3 enhanced radioresistance and cancer stemness in vitro and in vivo. Conversely, silencing ALG3 increased the radiosensitivity and repressed cancer stemness in vitro, and more importantly inhibition of ALG3 effectively increased the radiosensitivity of breast cancer cells in vivo. Mechanistically, our results further revealed ALG3 promoted radioresistance and cancer stemness by inducing glycosylation of TGF-ß receptor II (TGFBR2). Importantly, both attenuation of glycosylation using tunicamycin and inhibition of TGFBR2 using LY2109761 differentially abrogated the stimulatory effect of ALG3 overexpression on cancer stemness and radioresistance. Finally, our findings showed that radiation played an important role in preventing early recurrence in breast cancer patients with low ALG3 levels, but it had limited efficacy in ALG3-overexpressing breast cancer patients. CONCLUSION: Our results suggest that ALG3 may serve as a potential radiosensitive marker, and an effective target to decrease radioresistance by regulating glycosylation of TGFBR2 in breast cancer. For patients with low ALG3 levels, radiation remains an effective mainstay therapy to prevent early recurrence in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/radioterapia , Manosiltransferasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Glicosilación , Humanos , Manosiltransferasas/genética , Ratones , Tolerancia a Radiación , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Ann Hematol ; 100(9): 2293-2302, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33991204

RESUMEN

Despite the clinical value of HMGB1 in non-Hodgkin lymphoma (NHL), the impact of HMGB1 protein expression on survival of patients with mature T-cell and NK-cell lymphoma (T/NK-CL) is unknown. Here, we evaluated correlations of HMGB1 expression in tumor tissues with pathophysiological characteristics of disease and determined the prognostic value of HMGB1 expression in relapsed/refractory T/NK-CL. HMGB1 expression was detected by immunohistochemistry (IHC) in 66 cases of relapsed/refractory T/NK-CL, and specimens were classified as high or low HMGB1 expression. Univariate and multivariate Cox regression analyses identified prognostic factors associated with progression-free survival (PFS) and overall survival (OS). High HMGB1 expression was significantly correlated with increased Ki67 levels and progressive lymphoma subtypes. Univariate Cox regression analysis showed that high HMGB1 expression was associated with unfavorable PFS (P = 0.006) and poorer OS (P < 0.001). Prognostic factors identified by univariate analysis were prognostic index for peripheral T-cell lymphoma non-specified (PIT) score ≥ 2, bone marrow involvement, Ki67 ≥ 70%, and high HMGB1 expression. Multivariate Cox regression analysis revealed that high HMGB1 expression was an independent prognostic factor for poorer PFS [hazard ratio (HR) 3.593; 95% confidence interval (CI) 1.171-11.027; P = 0.025] and OS [HR 7.663; 95% CI 2.367-24.803; P = 0.001]. A proposal prognostic model combining HMGB1 and Ki67 expression showed improved prognostic capacity and may help guide treatment planning. High HMGB1 expression may be a promising prognostic predictor and a potential therapeutic target for relapsed/refractory T/NK-CL. Furthermore, to apply HMGB1 as one of the best bio-maker, an external independent control cohort is needed.


Asunto(s)
Proteína HMGB1/análisis , Linfoma Extranodal de Células NK-T/diagnóstico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Femenino , Humanos , Antígeno Ki-67/análisis , Linfoma Extranodal de Células NK-T/tratamiento farmacológico , Linfoma Extranodal de Células NK-T/patología , Linfoma Extranodal de Células NK-T/radioterapia , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/radioterapia , Prednisona/uso terapéutico , Pronóstico , Análisis de Supervivencia , Vincristina/uso terapéutico , Adulto Joven
18.
J Immunother Cancer ; 8(2)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33158915

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) induce better tumor regression in melanoma with programmed cell death 1 ligand 1 (PD-L1) high expression, but there has been an upsurge of failed responses. In this study, we aimed to explore the additional mechanisms possibly accounting for ICIs resistance and interventional strategies to overcome the resistance in melanoma with PD-L1 high expression. METHODS: Melanoma xenografts and cytotoxicity assays were used to investigate function of SOX2 in regulating antitumor immunity. The activity of the janus kinase-signal transducer and activator of transcriptions (JAK-STAT) pathway was investigated by western blots, quantitative PCR and luciferase assay. Epigenetic compounds library screen was employed to identify inhibitors that could decrease SOX2 level. The effect of histone deacetylase inhibitor SAHA in antitumor immunity alone or in combination with immunotherapy was also determined in vitro and in vivo. Prognostic impact of SOX2 was analyzed using transcriptional profiles and clinical data download from the Gene Expression Omnibus and The Cancer Genome Atlas repository. RESULTS: We uncovered a role of SOX2 in attenuating the sensitivity of melanoma cells to CD8+ T-cell killing. Mechanistically, SOX2 inhibited phosphatases suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase non-receptor type 1 (PTPN1) transcription, induced duration activation of the JAK-STAT pathway and thereby overexpression of interferon stimulated genes resistance signature (ISG.RS). By targeting the SOX2-JAK-STAT signaling, SAHA promoted the antitumor efficacy of IFNγ or anti-PD-1 in vitro and in vivo. Moreover, SOX2 was an independent prognostic factor for poor survival and resistant to anti-PD-1 therapy in melanoma with PD-L1 high expression. CONCLUSIONS: Our data unveiled an additional function of SOX2 causing immune evasion of CD8+ T-cell killing through alleviating the JAK-STAT pathway and ISG.RS expression. We also provided a rationale to explore a novel combination of ICIs with SAHA clinically, especially in melanoma with PD-L1 and SOX2 high expression.


Asunto(s)
Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Melanoma/inmunología , Melanoma/terapia , Factores de Transcripción SOXB1/inmunología , Vorinostat/farmacología , Animales , Antineoplásicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/biosíntesis , Resistencia a Antineoplásicos/inmunología , Células HEK293 , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Evasión Inmune , Melanoma/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos
19.
Sci Rep ; 10(1): 15021, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929120

RESUMEN

Ubiquinol-cytochrome c reductase hinge protein (UQCRH) is the hinge protein for the multi-subunit complex III of the mitochondrial electron transport chain and is involved in the electron transfer reaction between cytochrome c1 and c. Recent genome-wide transcriptomic and epigenomic profiling of clear cell renal cell carcinoma (ccRCC) by The Cancer Genome Atlas (TCGA) identified UQCRH as the top-ranked gene showing inverse correlation between DNA hypermethylation and mRNA downregulation. The function and underlying mechanism of UQCRH in the Warburg effect metabolism of ccRCC have not been characterized. Here, we verified the clinical association of low UQCRH expression and shorter survival of ccRCC patients through in silico analysis and identified KMRC2 as a highly relevant ccRCC cell line that displays hypermethylation-induced UQCRH extinction. Ectopic overexpression of UQCRH in KMRC2 restored mitochondrial membrane potential, increased oxygen consumption, and attenuated the Warburg effect at the cellular level. UQCRH overexpression in KMRC2 induced higher apoptosis and slowed down in vitro and in vivo tumor growth. UQCRH knockout by CRISPR/Cas9 had little impact on the metabolism and proliferation of 786O ccRCC cell line, suggesting the dispensable role of UQCRH in cells that have entered a Warburg-like state through other mechanisms. Together, our study suggests that loss of UQCRH expression by hypermethylation may promote kidney carcinogenesis through exacerbating the functional decline of mitochondria thus reinforcing the Warburg effect.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Complejo III de Transporte de Electrones/genética , Neoplasias Renales/metabolismo , Efecto Warburg en Oncología , Animales , Apoptosis , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Complejo III de Transporte de Electrones/metabolismo , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Ratones
20.
Clin Immunol ; 207: 68-78, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31374257

RESUMEN

This study aimed to investigate the possible functions and mechanisms of positive and negative costimulatory molecules in the pathological process of myasthenia gravis (MG). The expression levels of membrane-bound inducible costimulator (ICOS) and programmed cell death 1 (PD-1) in peripheral blood T cells, their corresponding ligands ICOSL and PDL-1 on B cells, and their soluble forms (sICOS, sPD-1, sICOSL, and sPDL-1) in plasma were detected in patients with untreated-stage MG (USMG) and remission-stage MG (RSMG). The results showed that the expression levels of membrane-bound ICOS and PD-1 in the peripheral blood T cells of the USMG group and their corresponding ligands ICOSL and PD-L1 on B cells were significantly increased compared to those in the RSMG group and healthy controls (HCs). The levels of sICOSL and sPD-1 were significantly upregulated in USMG patients compared to those in the RSMG and HC groups, while the levels of sICOS and sPD-L1 were not different. The expression of PD-L1 on CD19+ B cells was positively correlated with the concentrations of AchR Ab in the USMG group. The expression of ICOS and PD-1 in CD4+ T cells and the expression of ICOSL and PD-L1 on CD19+ B cells were positively correlated with the quantitative myasthenia gravis (QMG) scores in the USMG group. Also, in the USMG group, the plasma levels of sICOSL and sPD-1 were positively correlated with the QMG scores. In addition, the percentage of peripheral blood follicular helper T (Tfh) cells in the USMG group was positively correlated with ICOS and PD-1 expression on CD4+ T cells and ICOSL and PD-L1 expression on CD19+ B cells. There were positive correlations between sICOSL and sPD-1 levels and the percentage of peripheral blood Tfh cells and plasma interleukin-21 (IL-21) levels in the USMG group. The results suggest that the positive ICOS/ICOSL and negative PD-1/PD-L1 costimulatory molecule pairs participate in the pathological process of MG. Abnormal sICOSL and sPD-1 expression might interfere with the normal signal transduction of ICOS and PD-1 on Tfh cells, causing excessive activation of Tfh cells and promotion of disease progression. sICOSL and sPD-1 have potential value in monitoring MG disease states.


Asunto(s)
Antígeno B7-H1/metabolismo , Regulación de la Expresión Génica , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Miastenia Gravis/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Adulto , Anciano , Antígeno B7-H1/genética , Femenino , Humanos , Ligando Coestimulador de Linfocitos T Inducibles/genética , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Ligandos , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/genética , Regulación hacia Arriba , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA