Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cancer Sci ; 114(5): 2109-2122, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36625184

RESUMEN

Non-small-cell lung cancer (NSCLC) is one of the deadliest cancers worldwide, and metastasis is considered one of the leading causes of treatment failure in NSCLC. Wnt/ß-catenin signaling is crucially involved in epithelial-mesenchymal transition (EMT), a crucial factor in promoting metastasis, and also contributes to resistance developed by NSCLC to targeted agents. Frizzled-7 (Fzd7), a critical receptor of Wnt/ß-catenin signaling, is aberrantly expressed in NSCLC and has been confirmed to be positively correlated with poor clinical outcomes. SHH002-hu1, a humanized antibody targeting Fzd7, was previously successfully generated by our group. Here, we studied the anti-tumor effects of SHH002-hu1 against NSCLC and revealed the underlying mechanism. First, immunofluorescence (IF) and near-infrared (NIR) imaging assays showed that SHH002-hu1 specifically binds Fzd7+ NSCLC cells and targets NSCLC tissues. Wound healing and transwell invasion assays indicated that SHH002-hu1 significantly inhibits the migration and invasion of NSCLC cells. Subsequently, TOP-FLASH/FOP-FLASH luciferase reporter, IF, and western blot assays validated that SHH002-hu1 effectively suppresses the activation of Wnt/ß-catenin signaling, and further attenuates the EMT of NSCLC cells. Finally, the subcutaneous xenotransplanted tumor model of A549/H1975, as well as the popliteal lymph node (LN) metastasis model, was established, and SHH002-hu1 was demonstrated to inhibit the growth of NSCLC xenografts and suppress LN metastasis of NSCLC. Above all, SHH002-hu1 with selectivity toward Fzd7+ NSCLC and the potential of inhibiting invasion and metastasis of NSCLC via disrupting Wnt/ß-catenin signaling, is indicated as a good candidate for the targeted therapy of NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anticuerpos/farmacología , Antineoplásicos/farmacología , beta Catenina/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Vía de Señalización Wnt
2.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674721

RESUMEN

Klotho (KL) is a glycosyl hydrolase and aging-suppressor gene. Stress is a risk factor for depression and anxiety, which are highly comorbid with each other. The aim of this study is to determine whether KL is regulated by estrogen and plays an important role in sex differences in stress resilience. Our results showed that KL is regulated by estrogen in rat hippocampal neurons in vivo and in vitro and is essential for the estrogen-mediated increase in the number of presynaptic vesicular glutamate transporter 1 (Vglut1)-positive clusters on the dendrites of hippocampal neurons. The role of KL in sex differences in stress response was examined in rats using 3-week chronic unpredictable mild stress (CUMS). CUMS produced a deficit in spatial learning and memory, anhedonic-like behaviors, and anxiety-like behaviors in male but not female rats, which was accompanied by a reduction in KL protein levels in the hippocampus of male but not female rats. This demonstrated the resilience of female rats to CUMS. Interestingly, the knockdown of KL protein levels in the rat hippocampus of both sexes caused a decrease in stress resilience in both sexes, especially in female rats. These results suggest that the regulation of KL by estrogen plays an important role in estrogen-mediated synapse formation and that KL plays a critical role in the sex differences in cognitive deficit, anhedonic-like behaviors, and anxiety-like behaviors induced by chronic stress in rats, highlighting an important role of KL in sex differences in stress resilience.


Asunto(s)
Depresión , Caracteres Sexuales , Ratas , Animales , Masculino , Femenino , Depresión/metabolismo , Ansiedad , Trastornos de Ansiedad/metabolismo , Hipocampo/metabolismo , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Estrógenos/metabolismo
3.
Sci Signal ; 11(546)2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181243

RESUMEN

About a third of tumors have activating mutations in HRAS, NRAS, or KRAS, genes encoding guanosine triphosphatases (GTPases) of the RAS family. In these tumors, wild-type RAS cooperates with mutant RAS to promote downstream effector activation and cell proliferation and transformation, suggesting that upstream activators of wild-type RAS are important modulators of mutant RAS-driven oncogenesis. The guanine nucleotide exchange factor (GEF) SOS1 mediates KRAS-driven proliferation, but little is understood about the role of SOS2. We found that RAS family members have a hierarchical requirement for the expression and activity of SOS2 to drive cellular transformation. In mouse embryonic fibroblasts (MEFs), SOS2 critically mediated mutant KRAS-driven, but not HRAS-driven, transformation. Sos2 deletion reduced epidermal growth factor (EGF)-dependent activation of wild-type HRAS and phosphorylation of the kinase AKT in cells expressing mutant RAS isoforms. Assays using pharmacological inhibitors revealed a hierarchical requirement for signaling by phosphoinositide 3-kinase (PI3K) in promoting RAS-driven cellular transformation that mirrored the requirement for SOS2. KRAS-driven transformation required the GEF activity of SOS2 and was restored in Sos2-/- MEFs by expression of constitutively activated PI3K. Finally, CRISPR/Cas9-mediated deletion of SOS2 reduced EGF-stimulated AKT phosphorylation and synergized with MEK inhibition to revert the transformed phenotype of human KRAS mutant pancreatic and lung tumor cells. These results indicate that SOS2-dependent PI3K signaling mediates mutant KRAS-driven transformation, revealing therapeutic targets in KRAS-driven cancers. Our data also reveal the importance of three-dimensional culture systems in investigating the mediators of mutant KRAS.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Son Of Sevenless/metabolismo , Animales , Transformación Celular Neoplásica/genética , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Humanos , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/genética , Proteínas Son Of Sevenless/genética
4.
ACS Appl Mater Interfaces ; 9(13): 11493-11505, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28273414

RESUMEN

Oxidases are found to play a growing role in providing functional chemistry to marine adhesives for the permanent attachment of macrofouling organisms. Here, we demonstrate active peroxidase and lysyl oxidase enzymes in the adhesive layer of adult Amphibalanus amphitrite barnacles through live staining, proteomic analysis, and competitive enzyme assays on isolated cement. A novel full-length peroxinectin (AaPxt-1) secreted by barnacles is largely responsible for oxidizing phenolic chemistries; AaPxt-1 is driven by native hydrogen peroxide in the adhesive and oxidizes phenolic substrates typically preferred by phenoloxidases (POX) such as laccase and tyrosinase. A major cement protein component AaCP43 is found to contain ketone/aldehyde modifications via 2,4-dinitrophenylhydrazine (DNPH) derivatization, also called Brady's reagent, of cement proteins and immunoblotting with an anti-DNPH antibody. Our work outlines the landscape of molt-related oxidative pathways exposed to barnacle cement proteins, where ketone- and aldehyde-forming oxidases use peroxide intermediates to modify major cement components such as AaCP43.


Asunto(s)
Oxidorreductasas/metabolismo , Adhesivos , Animales , Catecol Oxidasa , Peróxidos , Proteína-Lisina 6-Oxidasa , Proteómica , Thoracica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA