Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
World J Oncol ; 15(4): 550-561, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38993243

RESUMEN

Background: Domestic and foreign studies on lung cancer have been oriented to the medical efficacy of low-dose computed tomography (LDCT), but there is a lack of studies on the costs, value and cost-effectiveness of the treatment. There is a scarcity of conclusive evidence regarding the cost-effectiveness of LDCT within the specific context of Taiwan. This study is designed to address this gap by conducting a comprehensive analysis of the cost-effectiveness of LDCT and chest X-ray (CXR) as screening methods for lung cancer. Methods: Markov decision model simulation was used to estimate the cost-effectiveness of biennial screening with LDCT and CXR based on a health provider perspective. Inputs are based on probabilities, health status utility (quality-adjusted life years (QALYs)), costs of lung cancer screening, diagnosis, and treatment from the literatures, and expert opinion. A total of 1,000 simulations and five cycles of Markov bootstrapping simulations were performed to compare the incremental cost-utility ratio (ICUR) of these two screening strategies. Probability and one-way sensitivity analyses were also performed. Results: The ICUR of early lung cancer screening compared LDCT to CXR is $-24,757.65/QALYs, and 100% of the probability agree to adopt it under a willingness-to-pay (WTP) threshold of the Taiwan gross domestic product (GDP) per capita ($35,513). The one-way sensitivity analysis also showed that ICUR depends heavily on recall rate. Based on the prevalence rate of 39.7 lung cancer cases per 100,000 people in 2020, it could be estimated that LDCT screening for high-risk populations could save $17,154,115. Conclusion: LDCT can detect more early lung cancers, reduce mortality and is cost-saving than CXR in a long-term simulation of Taiwan's healthcare system. This study provides valuable insights for healthcare decision-makers and suggests analyzing cost-effectiveness for additional variables in future research.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38700973

RESUMEN

Prostate cancer screening often relies on cost-intensive MRIs and invasive needle biopsies. Transrectal ultrasound imaging, as a more affordable and non-invasive alternative, faces the challenge of high inter-class similarity and intra-class variability between benign and malignant prostate cancers. This complexity requires more stringent differentiation of subtle features for accurate auxiliary diagnosis. In response, we introduce the novel Deep Augmented Metric Learning (DAML) network, specifically tailored for ultrasound-based prostate cancer classification. The DAML network represents a significant innovation in the metric learning space, introducing the Semantic Differences Mining Strategy (SDMS) to effectively discern and represent subtle differences in prostate ultrasound images, thereby enhancing tumor classification accuracy. Additionally, the DAML network strategically addresses class variability and limited sample sizes by combining the Linear Interpolation Augmentation Strategy (LIAS) and Permutation-Aided Reconstruction Loss (PARL). This approach enriches feature representation and introduces variability with straightforward structures, mirroring the efficacy of advanced sample generation techniques. We carried out comprehensive empirical assessments of the DAML model by testing its key components against a range of models, ensuring its effectiveness. Our results demonstrate the enhanced performance of the DAML model, achieving classification accuracies of 0.857 and 0.888 for benign and malignant cancers, respectively, underscoring its effectiveness in prostate cancer classification via medical imaging.

3.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36418927

RESUMEN

Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Biología Computacional , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sinergismo Farmacológico , Biología Computacional/métodos , Combinación de Medicamentos , Simulación por Computador
4.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176761

RESUMEN

In recent years, increasing biological experiments and scientific studies have demonstrated that microRNA (miRNA) plays an important role in the development of human complex diseases. Therefore, discovering miRNA-disease associations can contribute to accurate diagnosis and effective treatment of diseases. Identifying miRNA-disease associations through computational methods based on biological data has been proven to be low-cost and high-efficiency. In this study, we proposed a computational model named Stacked Autoencoder for potential MiRNA-Disease Association prediction (SAEMDA). In SAEMDA, all the miRNA-disease samples were used to pretrain a Stacked Autoencoder (SAE) in an unsupervised manner. Then, the positive samples and the same number of selected negative samples were utilized to fine-tune SAE in a supervised manner after adding an output layer with softmax classifier to the SAE. SAEMDA can make full use of the feature information of all unlabeled miRNA-disease pairs. Therefore, SAEMDA is suitable for our dataset containing small labeled samples and large unlabeled samples. As a result, SAEMDA achieved AUCs of 0.9210 and 0.8343 in global and local leave-one-out cross validation. Besides, SAEMDA obtained an average AUC and standard deviation of 0.9102 ± /-0.0029 in 100 times of 5-fold cross validation. These results were better than those of previous models. Moreover, we carried out three case studies to further demonstrate the predictive accuracy of SAEMDA. As a result, 82% (breast neoplasms), 100% (lung neoplasms) and 90% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by databases. Thus, SAEMDA could be a useful and reliable model to predict potential miRNA-disease associations.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , MicroARNs , Algoritmos , Biología Computacional/métodos , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Pulmonares/genética , MicroARNs/genética
5.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34676393

RESUMEN

MicroRNAs (miRNAs) play crucial roles in human disease and can be targeted by small molecule (SM) drugs according to numerous studies, which shows that identifying SM-miRNA associations in human disease is important for drug development and disease treatment. We proposed the method of Ensemble of Kernel Ridge Regression-based Small Molecule-MiRNA Association prediction (EKRRSMMA) to uncover potential SM-miRNA associations by combing feature dimensionality reduction and ensemble learning. First, we constructed different feature subsets for both SMs and miRNAs. Then, we trained homogeneous base learners based on distinct feature subsets and took the average of scores obtained from these base learners as SM-miRNA association score. In EKRRSMMA, feature dimensionality reduction technology was employed in the process of construction of feature subsets to reduce the influence of noisy data. Besides, the base learner, namely KRR_avg, was the combination of two classifiers constructed under SM space and miRNA space, which could make full use of the information of SM and miRNA. To assess the prediction performance of EKRRSMMA, we conducted Leave-One-Out Cross-Validation (LOOCV), SM-fixed local LOOCV, miRNA-fixed local LOOCV and 5-fold CV based on two datasets. For Dataset 1 (Dataset 2), EKRRSMMA got the Area Under receiver operating characteristic Curves (AUCs) of 0.9793 (0.8871), 0.8071 (0.7705), 0.9732 (0.8586) and 0.9767 ± 0.0014 (0.8560 ± 0.0027). Besides, we conducted four case studies. As a result, 32 (5-Fluorouracil), 19 (17ß-Estradiol), 26 (5-Aza-2'-deoxycytidine) and 11 (cyclophosphamide) out of top 50 predicted potentially associated miRNAs were confirmed by database or experimental literature. Above evaluation results demonstrated that EKRRSMMA is reliable for predicting SM-miRNA associations.


Asunto(s)
MicroARNs , Algoritmos , Área Bajo la Curva , Biología Computacional/métodos , Predisposición Genética a la Enfermedad , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Curva ROC
6.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34347021

RESUMEN

In recent years, increasing microRNA (miRNA)-disease associations were identified through traditionally biological experiments. These associations contribute to revealing molecular mechanism of diseases and preventing and curing diseases. To improve the efficiency of miRNA-disease association discovery, some calculation methods were developed as auxiliary tools for researchers. In the current study, we raised a novel model named Bayesian Ranking for MiRNA-Disease Association prediction (BRMDA) by improving Bayesian Personalized Ranking from three aspects: (i) taking advantage of similarity of diseases and miRNAs; (ii) incorporating miRNA bias for miRNAs associated with different number of diseases; and (iii) implementing neighborhood-based approach for new miRNAs and diseases. For each investigated disease, BRMDA used the set of triples (i.e. disease, labeled miRNA, unlabeled miRNA) that reflected association preference of the disease to miRNAs as training set, which made full use of unknown samples rather than simply considering them as negative samples. To investigate the predictive performance of BRMDA, we employed leave-one-out cross-validation and obtained Area Under the Curve of 0.8697, which outperformed many classical methods. Besides, we further implemented three distinct classes of case studies for three common Neoplasms. As a result, there are 44 (Colon Neoplasms), 49 (Esophageal Neoplasms) and 49 (Lung Neoplasms) among the top 50 predicted miRNAs validated through experiments. In short, BRMDA would be a trustable tool for inferring valuable associations.


Asunto(s)
Teorema de Bayes , Predisposición Genética a la Enfermedad , MicroARNs/genética , Algoritmos , Biología Computacional/métodos , Simulación por Computador , Humanos , Neoplasias/genética
7.
Front Genet ; 12: 720327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447416

RESUMEN

Numerous experiments have proved that microRNAs (miRNAs) could be used as diagnostic biomarkers for many complex diseases. Thus, it is conceivable that predicting the unobserved associations between miRNAs and diseases is extremely significant for the medical field. Here, based on heterogeneous networks built on the information of known miRNA-disease associations, miRNA function similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases, we developed a computing model of biased random walk with restart on multilayer heterogeneous networks for miRNA-disease association prediction (BRWRMHMDA) through enforcing degree-based biased random walk with restart (BRWR). Assessment results reflected that an AUC of 0.8310 was gained in local leave-one-out cross-validation (LOOCV), which proved the calculation algorithm's good performance. Besides, we carried out BRWRMHMDA to prioritize candidate miRNAs for esophageal neoplasms based on HMDD v2.0. We further prioritize candidate miRNAs for breast neoplasms based on HMDD v1.0. The local LOOCV results and performance analysis of the case study all showed that the proposed model has good and stable performance.

8.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34329377

RESUMEN

Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in the development of various complex diseases, so the identification of circRNA-disease associations would contribute to the diagnosis and treatment of diseases. In this review, we summarize the discovery, classifications and functions of circRNAs and introduce four important diseases associated with circRNAs. Then, we list some significant and publicly accessible databases containing comprehensive annotation resources of circRNAs and experimentally validated circRNA-disease associations. Next, we introduce some state-of-the-art computational models for predicting novel circRNA-disease associations and divide them into two categories, namely network algorithm-based and machine learning-based models. Subsequently, several evaluation methods of prediction performance of these computational models are summarized. Finally, we analyze the advantages and disadvantages of different types of computational models and provide some suggestions to promote the development of circRNA-disease association identification from the perspective of the construction of new computational models and the accumulation of circRNA-related data.


Asunto(s)
Biología Computacional/métodos , Neoplasias/genética , ARN Circular/genética , Algoritmos , Bases de Datos Genéticas , Femenino , Humanos , Aprendizaje Automático , Modelos Genéticos
9.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34020550

RESUMEN

MicroRNA (miRNA) plays an important role in the occurrence, development, diagnosis and treatment of diseases. More and more researchers begin to pay attention to the relationship between miRNA and disease. Compared with traditional biological experiments, computational method of integrating heterogeneous biological data to predict potential associations can effectively save time and cost. Considering the limitations of the previous computational models, we developed the model of deep-belief network for miRNA-disease association prediction (DBNMDA). We constructed feature vectors to pre-train restricted Boltzmann machines for all miRNA-disease pairs and applied positive samples and the same number of selected negative samples to fine-tune DBN to obtain the final predicted scores. Compared with the previous supervised models that only use pairs with known label for training, DBNMDA innovatively utilizes the information of all miRNA-disease pairs during the pre-training process. This step could reduce the impact of too few known associations on prediction accuracy to some extent. DBNMDA achieves the AUC of 0.9104 based on global leave-one-out cross validation (LOOCV), the AUC of 0.8232 based on local LOOCV and the average AUC of 0.9048 ± 0.0026 based on 5-fold cross validation. These AUCs are better than other previous models. In addition, three different types of case studies for three diseases were implemented to demonstrate the accuracy of DBNMDA. As a result, 84% (breast neoplasms), 100% (lung neoplasms) and 88% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by recent literature. Therefore, we could conclude that DBNMDA is an effective method to predict potential miRNA-disease associations.


Asunto(s)
Predisposición Genética a la Enfermedad , MicroARNs/genética , Neoplasias de la Mama , Humanos , Neoplasias Pulmonares , Reproducibilidad de los Resultados
10.
Genomics ; 112(1): 809-819, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31136792

RESUMEN

Many biological experimental studies have confirmed that microRNAs (miRNAs) play a significant role in human complex diseases. Exploring miRNA-disease associations could be conducive to understanding disease pathogenesis at the molecular level and developing disease diagnostic biomarkers. However, since conducting traditional experiments is a costly and time-consuming way, plenty of computational models have been proposed to predict miRNA-disease associations. In this study, we presented a neoteric Bayesian model (KBMFMDA) that combines kernel-based nonlinear dimensionality reduction, matrix factorization and binary classification. The main idea of KBMFMDA is to project miRNAs and diseases into a unified subspace and estimate the association network in that subspace. KBMFMDA obtained the AUCs of 0.9132, 0.8708, 0.9008±0.0044 in global and local leave-one-out and five-fold cross validation. Moreover, KBMFMDA was applied to three important human cancers in three different kinds of case studies and most of the top 50 potential disease-related miRNAs were confirmed by many experimental reports.


Asunto(s)
Estudios de Asociación Genética/métodos , MicroARNs , Neoplasias/genética , Algoritmos , Teorema de Bayes , Neoplasias del Colon/genética , Neoplasias Esofágicas/genética , Humanos , Linfoma/genética
11.
J Cell Mol Med ; 24(1): 573-587, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747722

RESUMEN

Accumulating experimental evidence has demonstrated that microRNAs (miRNAs) have a huge impact on numerous critical biological processes and they are associated with different complex human diseases. Nevertheless, the task to predict potential miRNAs related to diseases remains difficult. In this paper, we developed a Kernel Fusion-based Regularized Least Squares for MiRNA-Disease Association prediction model (KFRLSMDA), which applied kernel fusion technique to fuse similarity matrices and then utilized regularized least squares to predict potential miRNA-disease associations. To prove the effectiveness of KFRLSMDA, we adopted leave-one-out cross-validation (LOOCV) and 5-fold cross-validation and then compared KFRLSMDA with 10 previous computational models (MaxFlow, MiRAI, MIDP, RKNNMDA, MCMDA, HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA). Outperforming other models, KFRLSMDA achieved AUCs of 0.9246 in global LOOCV, 0.8243 in local LOOCV and average AUC of 0.9175 ± 0.0008 in 5-fold cross-validation. In addition, respectively, 96%, 100% and 90% of the top 50 potential miRNAs for breast neoplasms, colon neoplasms and oesophageal neoplasms were confirmed by experimental discoveries. We also predicted potential miRNAs related to hepatocellular cancer by removing all known related miRNAs of this cancer and 98% of the top 50 potential miRNAs were verified. Furthermore, we predicted potential miRNAs related to lymphoma using the data set in the old version of the HMDD database and 80% of the top 50 potential miRNAs were confirmed. Therefore, it can be concluded that KFRLSMDA has reliable prediction performance.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Simulación por Computador , Estudios de Asociación Genética , MicroARNs/genética , Neoplasias/genética , Neoplasias/patología , Predisposición Genética a la Enfermedad , Humanos
12.
Mol Ther Nucleic Acids ; 17: 164-174, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31265947

RESUMEN

Precision medicine has become a novel and rising concept, which depends much on the identification of individual genomic signatures for different patients. The cancer cell lines could reflect the "omic" diversity of primary tumors, based on which many works have been carried out to study the cancer biology and drug discovery both in experimental and computational aspects. In this work, we presented a novel method to utilize weighted graph regularized matrix factorization (WGRMF) for inferring anticancer drug response in cell lines. We constructed a p-nearest neighbor graph to sparsify drug similarity matrix and cell line similarity matrix, respectively. Using the sparsified matrices in the graph regularization terms, we performed matrix factorization to generate the latent matrices for drug and cell line. The graph regularization terms including neighbor information could help to exclude the noisy ingredient and improve the prediction accuracy. The 10-fold cross-validation was implemented, and the Pearson correlation coefficient (PCC), root-mean-square error (RMSE), PCCsr, and RMSEsr averaged over all drugs were calculated to evaluate the performance of WGRMF. The results on the Genomics of Drug Sensitivity in Cancer (GDSC) dataset are 0.64 ± 0.16, 1.37 ± 0.35, 0.73 ± 0.14, and 1.71 ± 0.44 for PCC, RMSE, PCCsr, and RMSEsr in turn. And for the Cancer Cell Line Encyclopedia (CCLE) dataset, WGRMF got results of 0.72 ± 0.09, 0.56 ± 0.19, 0.79 ± 0.07, and 0.69 ± 0.19, respectively. The results showed the superiority of WGRMF compared with previous methods. Besides, based on the prediction results using the GDSC dataset, three types of case studies were carried out. The results from both cross-validation and case studies have shown the effectiveness of WGRMF on the prediction of drug response in cell lines.

13.
Mol Pharm ; 16(7): 3157-3166, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31136190

RESUMEN

As microRNAs (miRNAs) have been reported to be a type of novel high-value small molecule (SM) drug targets for disease treatments, many researchers are engaged in the field of exploring new SM-miRNA associations. Nevertheless, because of the high cost, adopting traditional biological experiments constrains the efficiency of discovering new associations between SMs and miRNAs. Therefore, as an important auxiliary tool, reliable computational models will be of great help to reveal SM-miRNA associations. In this article, we developed a computational model of sparse learning and heterogeneous graph inference for small molecule-miRNA association prediction (SLHGISMMA). Initially, the sparse learning method (SLM) was implemented to decompose the SM-miRNA adjacency matrix. Then, we integrated the reacquired association information together with the similarity information of SMs and miRNAs into a heterogeneous graph to infer potential SM-miRNA associations. Here, the main innovation of SLHGISMMA lies in the introduction of SLM to eliminate noises of the original adjacency matrix to some extent, which plays an important role in performance improvement. In addition, to assess SLHGISMMA' performance, four different kinds of cross-validations were performed based on two datasets. As a result, based on dataset 1 (dataset 2), SLHGISMMA achieved area under the curves of 0.9273 (0.7774), 0.9365 (0.7973), 0.7703 (0.6556), and 0.9241 ± 0.0052 (0.7724 ± 0.0032) in global leave-one-out cross-validation (LOOCV), miRNA-fixed local LOOCV, SM-fixed local LOOCV, and 5-fold cross-validation, respectively. Moreover, in the case study on three important SMs via removing their known associations, the results showed that most of the top 50 predicted miRNAs were confirmed by the database SM2miR v1.0 or the experimental literature.


Asunto(s)
Biología Computacional/métodos , Decitabina/uso terapéutico , Estradiol/uso terapéutico , Fluorouracilo/uso terapéutico , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Algoritmos , Área Bajo la Curva , Simulación por Computador , Humanos , Curva ROC
14.
RNA Biol ; 16(3): 257-269, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30646823

RESUMEN

MicroRNAs (miRNAs) play an important role in prevention, diagnosis and treatment of human complex diseases. Predicting potential miRNA-disease associations could provide important prior information for medical researchers. Therefore, reliable computational models are expected to be an effective supplement for inferring associations between miRNAs and diseases. In this study, we developed a novel calculative model named Negative Samples Extraction based MiRNA-Disease Association prediction (NSEMDA). NSEMDA filtered reliable negative samples by two positive-unlabeled learning models, namely, the Spy and Rocchio techniques and calculated similarity weights for ambiguous samples. The positive samples, reliable negative samples and ambiguous samples with similarity weights were used to construct a Support Vector Machine-Similarity Weight model to predict miRNA-disease associations. NSEMDA improved the credibility of negative samples and reduced the impact of noise samples by introducing ambiguous samples with similarity weights to train prediction model. As a result, NSEMDA achieved the AUC of 0.8899 in global leave-one-out cross validation (LOOCV) and AUC of 0.8353 under local LOOCV. In 100 times 5-fold cross validation, NSEMDA obtained an average AUC of 0.8878 and standard deviation of 0.0014. These AUCs are higher than many classical models. Besides, we also carried out three kinds of case studies to evaluate the performance of NSEMDA. Among the top 50 potential related miRNAs of esophageal neoplasms, lung neoplasms and carcinoma hepatocellular predicted by NSEMDA, 46, 50 and 45 miRNAs were verified to be associated with the investigated disease by experimental evidences, respectively. Therefore, NSEMDA would be a reliable calculative model for inferring miRNA-disease associations.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , MicroARNs/genética , Algoritmos , Biomarcadores , Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Humanos , Neoplasias/etiología , Pronóstico , Curva ROC , Reproducibilidad de los Resultados , Transcriptoma
15.
Mol Ther Nucleic Acids ; 13: 568-579, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30439645

RESUMEN

Since the first microRNA (miRNA) was discovered, a lot of studies have confirmed the associations between miRNAs and human complex diseases. Besides, obtaining and taking advantage of association information between miRNAs and diseases play an increasingly important role in improving the treatment level for complex diseases. However, due to the high cost of traditional experimental methods, many researchers have proposed different computational methods to predict potential associations between miRNAs and diseases. In this work, we developed a computational model of Random Forest for miRNA-disease association (RFMDA) prediction based on machine learning. The training sample set for RFMDA was constructed according to the human microRNA disease database (HMDD) version (v.)2.0, and the feature vectors to represent miRNA-disease samples were defined by integrating miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity. The Random Forest algorithm was first employed to infer miRNA-disease associations. In addition, a filter-based method was implemented to select robust features from the miRNA-disease feature set, which could efficiently distinguish related miRNA-disease pairs from unrelated miRNA-disease pairs. RFMDA achieved areas under the curve (AUCs) of 0.8891, 0.8323, and 0.8818 ± 0.0014 under global leave-one-out cross-validation, local leave-one-out cross-validation, and 5-fold cross-validation, respectively, which were higher than many previous computational models. To further evaluate the accuracy of RFMDA, we carried out three types of case studies for four human complex diseases. As a result, 43 (esophageal neoplasms), 46 (lymphoma), 47 (lung neoplasms), and 48 (breast neoplasms) of the top 50 predicted disease-related miRNAs were verified by experiments in different kinds of case studies. The results of cross-validation and case studies indicated that RFMDA is a reliable model for predicting miRNA-disease associations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA