Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893469

RESUMEN

Hepatocellular carcinoma (HCC) results in the abnormal regulation of cellular metabolic pathways. Constraint-based modeling approaches can be utilized to dissect metabolic reprogramming, enabling the identification of biomarkers and anticancer targets for diagnosis and treatment. In this study, two genome-scale metabolic models (GSMMs) were reconstructed by employing RNA sequencing expression patterns of hepatocellular carcinoma (HCC) and their healthy counterparts. An anticancer target discovery (ACTD) framework was integrated with the two models to identify HCC targets for anticancer treatment. The ACTD framework encompassed four fuzzy objectives to assess both the suppression of cancer cell growth and the minimization of side effects during treatment. The composition of a nutrient may significantly affect target identification. Within the ACTD framework, ten distinct nutrient media were utilized to assess nutrient uptake for identifying potential anticancer enzymes. The findings revealed the successful identification of target enzymes within the cholesterol biosynthetic pathway using a cholesterol-free cell culture medium. Conversely, target enzymes in the cholesterol biosynthetic pathway were not identified when the nutrient uptake included a cholesterol component. Moreover, the enzymes PGS1 and CRL1 were detected in all ten nutrient media. Additionally, the ACTD framework comprises dual-group representations of target combinations, pairing a single-target enzyme with an additional nutrient uptake reaction. Additionally, the enzymes PGS1 and CRL1 were identified across the ten-nutrient media. Furthermore, the ACTD framework encompasses two-group representations of target combinations involving the pairing of a single-target enzyme with an additional nutrient uptake reaction. Computational analysis unveiled that cell viability for all dual-target combinations exceeded that of their respective single-target enzymes. Consequently, integrating a target enzyme while adjusting an additional exchange reaction could efficiently mitigate cell proliferation rates and ATP production in the treated cancer cells. Nevertheless, most dual-target combinations led to lower side effects in contrast to their single-target counterparts. Additionally, differential expression of metabolites between cancer cells and their healthy counterparts were assessed via parsimonious flux variability analysis employing the GSMMs to pinpoint potential biomarkers. The variabilities of the fluxes and metabolite flow rates in cancer and healthy cells were classified into seven categories. Accordingly, two secretions and thirteen uptakes (including eight essential amino acids and two conditionally essential amino acids) were identified as potential biomarkers. The findings of this study indicated that cancer cells exhibit a higher uptake of amino acids compared with their healthy counterparts.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Modelos Biológicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Redes y Vías Metabólicas , Proliferación Celular/efectos de los fármacos
2.
Mol Med ; 30(1): 66, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773377

RESUMEN

BACKGROUND: The current treatment of osteogenesis imperfecta (OI) is imperfect. Our study thus delves into the potential of using Dickkopf-1 antisense (DKK1-AS) to treat OI. METHODS: We analysed serum DKK1 levels and their correlation with lumbar spine and hip T-scores in OI patients. Comparative analyses were conducted involving bone marrow stromal cells (BMSCs) and bone tissues from wild-type mice, untreated OI mice, and OI mice treated with DKK1-ASor DKK1-sense (DKK1-S). RESULTS: Significant inverse correlations were noted between serum DKK1 levels and lumbar spine (correlation coefficient = - 0.679, p = 0.043) as well as hip T-scores (correlation coefficient = - 0.689, p = 0.042) in OI patients. DKK1-AS improved bone mineral density (p = 0.002), trabecular bone volume/total volume fraction (p < 0.001), trabecular separation (p = 0.010), trabecular thickness (p = 0.001), trabecular number (p < 0.001), and cortical thickness (p < 0.001) in OI mice. DKK1-AS enhanced the transcription of collagen 1α1, osteocalcin, runx2, and osterix in BMSC from OI mice (all p < 0.001), resulting in a higher von Kossa-stained matrix area (p < 0.001) in ex vivo osteogenesis assays. DKK1-AS also reduced osteoclast numbers (p < 0.001), increased ß-catenin and T-cell factor 4 immunostaining reactivity (both p < 0.001), enhanced mineral apposition rate and bone formation rate per bone surface (both p < 0.001), and decreased osteoclast area (p < 0.001) in OI mice. DKK1-AS upregulated osteoprotegerin and downregulated nuclear factor-kappa B ligand transcription (both p < 0.001). Bone tissues from OI mice treated with DKK1-AS exhibited significantly higher breaking force compared to untreated OI mice (p < 0.001). CONCLUSIONS: Our study elucidates that DKK1-AS has the capability to enhance bone mechanical properties, restore the transcription of osteogenic genes, promote osteogenesis, and inhibit osteoclastogenesis in OI mice.


Asunto(s)
Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular , Osteogénesis Imperfecta , Animales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Osteogénesis Imperfecta/metabolismo , Ratones , Humanos , Femenino , Masculino , Densidad Ósea , Osteogénesis , Células Madre Mesenquimatosas/metabolismo
3.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38671918

RESUMEN

Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.

4.
Mitochondrion ; 76: 101856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408618

RESUMEN

Mitochondria are important for maintaining cellular energy metabolism and regulating cellular senescence. Mitochondrial DNA (mtDNA) encodes subunits of the OXPHOS complexes which are essential for cellular respiration and energy production. Meanwhile, mtDNA variants have been associated with the pathogenesis of neurodegenerative diseases, including MELAS, for which no effective treatment has been developed. To alleviate the pathological conditions involved in mitochondrial disorders, mitochondria transfer therapy has shown promise. Wharton's jelly mesenchymal stem cells (WJMSCs) have been identified as suitable mitochondria donors for mitochondria-defective cells, wherein mitochondrial functions can be rescued. Miro1 participates in mitochondria trafficking by anchoring mitochondria to microtubules. In this study, we identified Miro1 over-expression as a factor that could help to enhance the efficiency of mitochondrial delivery. More specifically, we reveal that Miro1 over-expressed WJMSCs significantly improved intercellular communications, cell proliferation rates, and mitochondrial membrane potential, while restoring mitochondrial bioenergetics in mitochondria-defective fibroblasts. Furthermore, Miro1 over-expressed WJMSCs decreased rates of induced apoptosis and ROS production in MELAS fibroblasts; although, Miro1 over-expression did not rescue mtDNA mutation ratios nor mitochondrial biogenesis. This study presents a potentially novel therapeutic strategy for treating mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), and other diseases associated with dysfunctional mitochondria, while the pathophysiological relevance of our results should be further verified by animal models and clinical studies.


Asunto(s)
Células Madre Mesenquimatosas , Mitocondrias , Gelatina de Wharton , Proteínas de Unión al GTP rho , Humanos , Apoptosis , Proliferación Celular , Células Cultivadas , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Fibroblastos/metabolismo , Potencial de la Membrana Mitocondrial , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Gelatina de Wharton/citología
5.
BMC Bioinformatics ; 24(1): 364, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759157

RESUMEN

In this paper, a fuzzy hierarchical optimization framework is proposed for identifying potential antiviral targets for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the heart. The proposed framework comprises four objectives for evaluating the elimination of viral biomass growth and the minimization of side effects during treatment. In the application of the framework, Dulbecco's modified eagle medium (DMEM) and Ham's medium were used as uptake nutrients on an antiviral target discovery platform. The prediction results from the framework reveal that most of the antiviral enzymes in the aforementioned media are involved in fatty acid metabolism and amino acid metabolism. However, six enzymes involved in cholesterol biosynthesis in Ham's medium and three enzymes involved in glycolysis in DMEM are unable to eliminate the growth of the SARS-CoV-2 biomass. Three enzymes involved in glycolysis, namely BPGM, GAPDH, and ENO1, in DMEM combine with the supplemental uptake of L-cysteine to increase the cell viability grade and metabolic deviation grade. Moreover, six enzymes involved in cholesterol biosynthesis reduce and fail to reduce viral biomass growth in a culture medium if a cholesterol uptake reaction does not occur and occurs in this medium, respectively.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Colesterol
6.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298111

RESUMEN

Spinal epidural fibrosis is one of the typical features attributable to failed back surgery syndrome, with excessive scar development in the dura and nerve roots. The microRNA-29 family (miR-29s) has been found to act as a fibrogenesis-inhibitory factor that reduces fibrotic matrix overproduction in various tissues. However, the mechanistic basis of miRNA-29a underlying the overabundant fibrotic matrix synthesis in spinal epidural scars post-laminectomy remained elusive. This study revealed that miR-29a attenuated lumbar laminectomy-induced fibrogenic activity, and epidural fibrotic matrix formation was significantly lessened in the transgenic mice (miR-29aTg) as compared with wild-type mice (WT). Moreover, miR-29aTg limits laminectomy-induced damage and has also been demonstrated to detect walking patterns, footprint distribution, and moving activity. Immunohistochemistry staining of epidural tissue showed that miR-29aTg was a remarkably weak signal of IL-6, TGF-ß1, and DNA methyltransferase marker, Dnmt3b, compared to the wild-type mice. Taken together, these results have further strengthened the evidence that miR-29a epigenetic regulation reduces fibrotic matrix formation and spinal epidural fibrotic activity in surgery scars to preserve the integrity of the spinal cord core. This study elucidates and highlights the molecular mechanisms that reduce the incidence of spinal epidural fibrosis, eliminating the risk of gait abnormalities and pain associated with laminectomy.


Asunto(s)
Interleucina-6 , MicroARNs , Ratones , Animales , Interleucina-6/genética , Factor de Crecimiento Transformador beta1/genética , Laminectomía/efectos adversos , Cicatriz/genética , Epigénesis Genética , MicroARNs/genética , Fibrosis , Ratones Transgénicos , Marcha
7.
PLoS One ; 18(5): e0286032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205704

RESUMEN

Identifying essential targets in the genome-scale metabolic networks of cancer cells is a time-consuming process. The present study proposed a fuzzy hierarchical optimization framework for identifying essential genes, metabolites and reactions. On the basis of four objectives, the present study developed a framework for identifying essential targets that lead to cancer cell death and evaluating metabolic flux perturbations in normal cells that have been caused by cancer treatment. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. We applied nested hybrid differential evolution to solve the trilevel MDM problem to identify essential targets in genome-scale metabolic models for five consensus molecular subtypes (CMSs) of colorectal cancer. We used various media to identify essential targets for each CMS and discovered that most targets affected all five CMSs and that some genes were CMS-specific. We obtained experimental data on the lethality of cancer cell lines from the DepMap database to validate the identified essential genes. The results reveal that most of the identified essential genes were compatible with the colorectal cancer cell lines obtained from DepMap and that these genes, with the exception of EBP, LSS, and SLC7A6, could generate a high level of cell death when knocked out. The identified essential genes were mostly involved in cholesterol biosynthesis, nucleotide metabolisms, and the glycerophospholipid biosynthetic pathway. The genes involved in the cholesterol biosynthetic pathway were also revealed to be determinable, if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in the cholesterol biosynthetic pathway became non-essential if such a reaction was induced. Furthermore, the essential gene CRLS1 was revealed as a medium-independent target for all CMSs.


Asunto(s)
Neoplasias Colorrectales , Genes Esenciales , Humanos , Genes Esenciales/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética
8.
Cells ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497089

RESUMEN

Parkinson disease (PD) is the second-most common neurodegenerative disease. The characteristic pathology of progressive dopaminergic neuronal loss in people with PD is associated with iron accumulation and is suggested to be driven in part by the novel cell death pathway, ferroptosis. A unique modality of cell death, ferroptosis is mediated by iron-dependent phospholipid peroxidation. The mechanisms of ferroptosis inhibitors enhance antioxidative capacity to counter the oxidative stress from lipid peroxidation, such as through the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis and the coenzyme Q10 (CoQ10)/FSP1 pathway. Another means to reduce ferroptosis is with iron chelators. To date, there is no disease-modifying therapy to cure or slow PD progression, and a recent topic of research seeks to intervene with the development of PD via regulation of ferroptosis. In this review, we provide a discussion of different cell death pathways, the molecular mechanisms of ferroptosis, the role of ferroptosis in blood-brain barrier damage, updates on PD studies in ferroptosis, and the latest progress of pharmacological agents targeting ferroptosis for the intervention of PD in clinical trials.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Hierro/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Glutatión/metabolismo , Encéfalo/metabolismo
9.
Cell Commun Signal ; 20(1): 200, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575468

RESUMEN

BACKGROUND: Despite advances in treatment, patients with refractory colorectal cancer (CRC) still have poor long-term survival, so there is a need for more effective therapeutic options. METHODS: To evaluate the HDAC8 inhibition efficacy as a CRC treatment, we examined the effects of various HDAC8 inhibitors (HDAC8i), including BMX (NBM-T-L-BMX-OS01) in combination with temozolomide (TMZ) or other standard CRC drugs on p53 mutated HT29 cells, as well as wild-type p53 HCT116 and RKO cells. RESULTS: We showed that HDAC8i with TMZ cotreatment resulted in HT29 arrest in the S and G2/M phase, whereas HCT116 and RKO arrest in the G0/G1 phase was accompanied by high sub-G1. Subsequently, this combination approach upregulated p53-mediated MGMT inhibition, leading to apoptosis. Furthermore, we observed the cotreatment also enabled triggering of cell senescence and decreased expression of stem cell biomarkers. Mechanistically, we found down-expression levels of ß-catenin, cyclin D1 and c-Myc via GSK3ß/ß-catenin signaling. Intriguingly, autophagy also contributes to cell death under the opposite status of ß-catenin/p62 axis, suggesting that there exists a negative feedback regulation between Wnt/ß-catenin and autophagy. Consistently, the Gene Set Enrichment Analysis (GSEA) indicated both apoptotic and autophagy biomarkers in HT29 and RKO were upregulated after treating with BMX. CONCLUSIONS: BMX may act as a HDAC8 eraser and in combination with reframed-TMZ generates a remarkable synergic effect, providing a novel therapeutic target for various CRCs. Video Abstract.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Temozolomida , Humanos , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Temozolomida/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt , Inhibidores de Histona Desacetilasas/farmacología , Células HT29
10.
R Soc Open Sci ; 9(10): 220633, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36303939

RESUMEN

Computer-aided methods can be used to screen potential candidate targets and to reduce the time and cost of drug development. In most of these methods, synthetic lethality is used as a therapeutic criterion to identify drug targets. However, these methods do not consider the side effects during the identification stage. This study developed a fuzzy multi-objective optimization for identifying anti-cancer targets that not only evaluated cancer cell mortality, but also minimized side effects due to treatment. We identified potential anti-cancer enzymes and antimetabolites for the treatment of head and neck cancer (HNC). The identified one- and two-target enzymes were primarily involved in six major pathways, namely, purine and pyrimidine metabolism and the pentose phosphate pathway. Most of the identified targets can be regulated by approved drugs; thus, these drugs are potential candidates for drug repurposing as a treatment for HNC. Furthermore, we identified antimetabolites involved in pathways similar to those identified using a gene-centric approach. Moreover, HMGCR knockdown could not block the growth of HNC cells. However, the two-target combinations of (UMPS, HMGCR) and (CAD, HMGCR) could achieve cell mortality and improve metabolic deviation grades over 22% without reducing the cell viability grade.

11.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077084

RESUMEN

Recent studies have shown dysbiosis is associated with inflammatory bowel disease (IBD). However, trying to restore microbial diversity via fecal microbiota transplantation (FMT) or probiotic intervention fails to achieve clinical benefit in IBD patients. We performed a probiotic intervention on a simulated IBD murine model to clarify their relationship. IBD was simulated by the protocol of azoxymethane and dextran sodium sulfate (AOM/DSS) to set up a colitis and colitis-associated neoplasm model on BALB/c mice. A single probiotic intervention using Clostridium butyricum Miyairi (CBM) on AOM/DSS mice to clarify the role of probiotic in colitis, colitis-associated neoplasm, gut microbiota, and immune cytokines was performed. We found dysbiosis occurred in AOM/DSS mice. The CBM intervention on AOM/DSS mice failed to improve colitis and colitis-associated neoplasms but changed microbial composition and unexpectedly increased expression of proinflammatory IL-17A in rectal tissue. We hypothesized that the probiotic intervention caused dysbiosis. To clarify the result, we performed inverse FMT using feces from AOM/DSS mice to normal recipients to validate the pathogenic effect of dysbiosis from AOM/DSS mice and found mice on inverse FMT did develop colitis and colon neoplasms. We presumed the probiotic intervention to some extent caused dysbiosis as inverse FMT. The role of probiotics in IBD requires further elucidation.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Enfermedades Inflamatorias del Intestino , Probióticos , Animales , Azoximetano/toxicidad , Colitis/inducido químicamente , Colitis/terapia , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Disbiosis/terapia , Enfermedades Inflamatorias del Intestino/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Probióticos/farmacología , Sulfatos
12.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163556

RESUMEN

A high-fat diet is responsible for hepatic fat accumulation that sustains chronic liver damage and increases the risks of steatosis and hepatocellular carcinoma (HCC). MicroRNA-29a (miR-29a), a key regulator of cellular behaviors, is present in anti-fibrosis and modulator tumorigenesis. However, the increased transparency of the correlation between miR-29a and the progression of human HCC is still further investigated. In this study, we predicted HIF-1α and ANGPT2 as regulators of HCC by the OncoMir cancer database and showed a strong positive correlation with HIF-1α and ANGPT2 gene expression in HCC patients. Mice fed the western diet (WD) while administered CCl4 for 25 weeks induced chronic liver damage and higher HCC incidence than without fed WD mice. HCC section staining revealed signaling upregulation in ki67, severe fibrosis, and steatosis in WD and CCl4 mice and detected Col3a1 gene expressions. HCC tissues significantly attenuated miR-29a but increased in HIF-1α, ANGPT2, Lox, Loxl2, and VEGFA expression. Luciferase activity analysis confirms that miR-29a specific binding 3'UTR of HIF-1α and ANGPT2 to repress expression. In summary, miR-29a control HIF-1α and ANGPT2 signaling in HCC formation. This study insight into a novel molecular pathway by which miR-29a targeting HIF-1α and ANGPT2 counteracts the incidence of HCC development.


Asunto(s)
Angiopoyetina 2/genética , Carcinoma Hepatocelular/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Hepáticas/patología , MicroARNs/genética , Regiones no Traducidas 3' , Angiopoyetina 2/metabolismo , Animales , Tetracloruro de Carbono/efectos adversos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Incidencia , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Transducción de Señal
13.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35009003

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), the most common cause of chronic liver disease, consists of fat deposited (steatosis) in the liver due to causes besides excessive alcohol use. The folding activity of heat shock protein 60 (HSP60) has been shown to protect mitochondria from proteotoxicity under various types of stress. In this study, we investigated whether HSP60 could ameliorate experimental high-fat diet (HFD)-induced obesity and hepatitis and explored the potential mechanism in mice. The results uncovered that HSP60 gain not only alleviated HFD-induced body weight gain, fat accumulation, and hepatocellular steatosis, but also glucose tolerance and insulin resistance according to intraperitoneal glucose tolerance testing and insulin tolerance testing in HSP60 transgenic (HSP60Tg) compared to wild-type (WT) mice by HFD. Furthermore, overexpression of HSP60 in the HFD group resulted in inhibited release of mitochondrial dsRNA (mt-dsRNA) compared to WT mice. In addition, overexpression of HSP60 also inhibited the activation of toll-like receptor 3 (TLR3), melanoma differentiation-associated gene 5 (MDA5), and phosphorylated-interferon regulatory factor 3 (p-IRF3), as well as inflammatory biomarkers such as mRNA of il-1ß and il-6 expression in the liver in response to HFD. The in vitro study also confirmed that the addition of HSP-60 mimics in HepG2 cells led to upregulated expression level of HSP60 and restricted release of mt-dsRNA, as well as downregulated expression levels of TLR3, MDA5, and pIRF3. This study provides novel insight into a hepatoprotective effect, whereby HSP60 inhibits the release of dsRNA to repress the TLR3/MDA5/pIRF3 pathway in the context of NAFLD or hepatic inflammation. Therefore, HSP60 may serve as a possible therapeutic target for improving NAFLD.


Asunto(s)
Chaperonina 60/metabolismo , Regulación de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Bicatenario/genética , Tejido Adiposo/metabolismo , Animales , Biomarcadores , Peso Corporal , Chaperonina 60/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Glucosa/metabolismo , Hepatitis/etiología , Hepatitis/metabolismo , Hepatitis/patología , Inmunohistoquímica , Resistencia a la Insulina , Metabolismo de los Lípidos , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Receptor Toll-Like 3/metabolismo
14.
Int J Nanomedicine ; 16: 7813-7830, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880610

RESUMEN

INTRODUCTION: Osteoporosis is a result of an imbalance in bone remodeling. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been considered as a potentially promising treatment for osteoporosis. However, the therapeutic effect, genetic alterations, and in vivo behavior of exogenous EVs for osteoporosis in mice models remain poorly understood. METHODS: A multiplexed molecular imaging strategy was constructed by micro-positron emission tomography (µPET)/computed tomography (CT), µCT, and optical imaging modality which reflected the osteoblastic activity, microstructure, and in vivo behavior of EVs, respectively. RNA sequencing was used to analyze the cargo of EVs, and the bone tissues of ovariectomized (OVX) mice post EV treatment. RESULTS: The result of [18F]NaF µPET showed an increase in osteoblastic activity in the distal femur of EV-treated mice, and the bone structural parameters derived from µCT were also improved. In terms of in vivo behavior of exogenous EVs, fluorescent dye-labeled EVs could target the distal femur of mice, whereas the uptakes of bone tissues were not significantly different between OVX mice and healthy mice. RNA sequencing demonstrated upregulation of ECM-related genes, which might associate with the PI3K/AKT signaling pathway, in line with the results of microRNA analysis showing that mir-21, mir-29, mir-221, and let-7a were enriched in Wharton's jelly-MSC-EVs and correlated to the BMP and PI3K/AKT signaling pathways. CONCLUSION: The therapeutic effect of exogenous WJ-MSC-EVs in the treatment of osteoporosis was successfully assessed by a multiplexed molecular imaging strategy. The RNA sequencing demonstrated the possible molecular targets in the regulation of bone remodeling. The results highlight the novelty of diagnostic and therapeutic strategies of EV-based treatment for osteoporosis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , Gelatina de Wharton , Animales , Ratones , Imagen Molecular , Osteoporosis/diagnóstico por imagen , Osteoporosis/terapia , Fosfatidilinositol 3-Quinasas , Análisis de Secuencia de ARN
15.
Biology (Basel) ; 10(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34827109

RESUMEN

The efficient discovery of anticancer targets with minimal side effects is a major challenge in drug discovery and development. Early prediction of side effects is key for reducing development costs, increasing drug efficacy, and increasing drug safety. This study developed a fuzzy optimization framework for Identifying AntiCancer Targets (IACT) using constraint-based models. Four objectives were established to evaluate the mortality of treated cancer cells and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Fuzzy set theory was applied to evaluate potential side effects and investigate the magnitude of metabolic deviations in perturbed cells compared with their normal counterparts. The framework was applied to identify not only gene regulator targets but also metabolite- and reaction-centric targets. A nested hybrid differential evolution algorithm with a hierarchical fitness function was applied to solve multilevel IACT problems. The results show that the combination of a carbon metabolism target and any one-target gene that participates in the sphingolipid, glycerophospholipid, nucleotide, cholesterol biosynthesis, or pentose phosphate pathways is more effective for treatment than one-target inhibition is. A clinical antimetabolite drug 5-fluorouracil (5-FU) has been used to inhibit synthesis of deoxythymidine-5'-triphosphate for treatment of colorectal cancer. The computational results reveal that a two-target combination of 5-FU and a folate supplement can improve cell viability, reduce metabolic deviation, and reduce side effects of normal cells.

16.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502380

RESUMEN

Biophysical stimulation alters bone-forming cell activity, bone formation and remodeling. The effect of piezoelectric microvibration stimulation (PMVS) intervention on osteoporosis development remains uncertain. We investigated whether 60 Hz, 120 Hz, and 180 Hz PMVS (0.05 g, 20 min/stimulation, 3 stimulations/week for 4 consecutive weeks) intervention affected bone integrity in ovariectomized (OVX) mice or osteoblastic activity. PMVS (120 Hz)-treated OVX mice developed fewer osteoporosis conditions, including bone mineral density loss and trabecular microstructure deterioration together with decreased serum resorption marker CTX-1 levels, as compared to control OVX animals. The biomechanical strength of skeletal tissue was improved upon 120 Hz PMVS intervention. This intervention compromised OVX-induced sparse trabecular bone morphology, osteoblast loss, osteoclast overburden, and osteoclast-promoting cytokine RANKL immunostaining and reversed osteoclast inhibitor OPG immunoreactivity. Osteoblasts in OVX mice upon PMVS intervention showed strong Wnt3a immunoreaction and weak Wnt inhibitor Dkk1 immunostaining. In vitro, PMVS reversed OVX-induced loss in von Kossa-stained mineralized nodule formation, Runx2, and osteocalcin expression in primary bone-marrow stromal cells. PMVS also promoted mechanoreceptor Piezo1 expression together with increased microRNA-29a and Wnt3a expression, whereas Dkk1 rather than SOST expression was repressed in MC3T3-E1 osteoblasts. Taken together, PMVS intervention promoted Piezo1, miR-29a, and Wnt signaling to upregulate osteogenic activity and repressed osteoclastic bone resorption, delaying estrogen deficiency-induced loss in bone mass and microstructure. This study highlights a new biophysical remedy for osteoporosis.


Asunto(s)
Osteoblastos/metabolismo , Osteoporosis/terapia , Terapia por Ultrasonido/métodos , Animales , Fenómenos Biomecánicos , Densidad Ósea/efectos de los fármacos , Resorción Ósea/metabolismo , Huesos/metabolismo , Calcificación Fisiológica , Diferenciación Celular/efectos de los fármacos , Estrógenos/metabolismo , Femenino , Canales Iónicos/metabolismo , Canales Iónicos/fisiología , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/fisiología , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Osteoporosis/metabolismo , Ovariectomía , Transducción de Señal , Ondas Ultrasónicas , Proteína Wnt3A/metabolismo
17.
FEBS Open Bio ; 11(8): 2078-2094, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34137202

RESUMEN

Cancer cell dysregulations result in the abnormal regulation of cellular metabolic pathways. By simulating this metabolic reprogramming using constraint-based modeling approaches, oncogenes can be predicted, and this knowledge can be used in prognosis and treatment. We introduced a trilevel optimization problem describing metabolic reprogramming for inferring oncogenes. First, this study used RNA-Seq expression data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) samples and their healthy counterparts to reconstruct tissue-specific genome-scale metabolic models and subsequently build the flux distribution pattern that provided a measure for the oncogene inference optimization problem for determining tumorigenesis. The platform detected 45 genes for LUAD and 84 genes for LUSC that lead to tumorigenesis. A high level of differentially expressed genes was not an essential factor for determining tumorigenesis. The platform indicated that pyruvate kinase (PKM), a well-known oncogene with a low level of differential gene expression in LUAD and LUSC, had the highest fitness among the predicted oncogenes based on computation. By contrast, pyruvate kinase L/R (PKLR), an isozyme of PKM, had a high level of differential gene expression in both cancers. Phosphatidylserine synthase 1 (PTDSS1), an oncogene in LUAD, was inferred to have a low level of differential gene expression, and overexpression could significantly reduce survival probability. According to the factor analysis, PTDSS1 characteristics were close to those of the template, but they were unobvious in LUSC. Angiotensin-converting enzyme 2 (ACE2) has recently garnered widespread interest as the SARS-CoV-2 virus receptor. Moreover, we determined that ACE2 is an oncogene of LUSC but not of LUAD. The platform developed in this study can identify oncogenes with low levels of differential expression and be used to identify potential therapeutic targets for cancer treatment.

18.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560314

RESUMEN

Psoriatic arthritis (PsA) is a destructive joint disease mediated by osteoclasts. MicroRNAs (miRNAs) regulate several important pathways in osteoclastogenesis. We profiled the expression of miRNAs in CD14+ monocytes from PsA patients and investigated how candidate microRNAs regulate the pathophysiology in osteoclastogenesis. The RNA from circulatory CD14+ monocytes was isolated from PsA patients, psoriasis patients without arthritis (PsO), and healthy controls (HCs). The miRNAs were initially profiled by next-generation sequencing (NGS). The candidate miRNAs revealed by NGS were validated by PCR in 40 PsA patients, 40 PsO patients, and 40 HCs. The osteoclast differentiation and its functional resorption activity were measured with or without RNA interference against the candidate miRNA. The microRNA-941 was selectively upregulated in CD14+ monocytes from PsA patients. Osteoclast development and resorption ability were increased in CD14+ monocytes from PsA patients. Inhibition of miR-941 abrogated the osteoclast development and function while increased the expression of WNT16. After successful treatment, the increased miR-941 expression in CD14+ monocytes from PsA patients was revoked. The expression of miR-941 in CD14+ monocytes is associated with PsA disease activity. MiR-941 enhances osteoclastogenesis in PsA via WNT16 repression. The miR-941 could be a potential biomarker and treatment target for PsA.


Asunto(s)
Artritis Psoriásica/etiología , Artritis Psoriásica/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Monocitos/metabolismo , Osteoclastos/metabolismo , Proteínas Wnt/metabolismo , Adulto , Anciano , Artritis Psoriásica/diagnóstico , Resorción Ósea/genética , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Receptores de Lipopolisacáridos/metabolismo , Masculino , Persona de Mediana Edad , Curva ROC , Máquina de Vectores de Soporte
19.
Cells ; 9(6)2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575577

RESUMEN

Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis.


Asunto(s)
Adipogénesis/fisiología , Médula Ósea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glucocorticoides/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/efectos de los fármacos , Glucocorticoides/farmacología , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/efectos de los fármacos , Osteogénesis/fisiología
20.
Int J Mol Sci ; 21(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455716

RESUMEN

Recent studies have found that microRNA-29a (miR-29a) levels are significantly lower in fibrotic livers, as shown with human liver cirrhosis. Such downregulation influences the activation of hepatic stellate cells (HSC). Phosphoinositide 3-kinase p85 alpha (PI3KP85α) is implicated in the regulation of proteostasis mitochondrial integrity and unfolded protein response (UPR) and apoptosis in hepatocytes. This study aimed to investigate the potential therapeutic role of miR-29a in a murine bile duct ligation (BDL)-cholestatic injury and liver fibrosis model. Mice were assigned to four groups: sham, BDL, BDL + scramble miRs, and BDL + miR-29a-mimic. Liver fibrosis and inflammation were assessed by histological staining and mRNA/protein expression of representative markers. Exogenous therapeutics of miR-29a in BDL-stressed mice significantly attenuated glutamic oxaloacetic transaminase (GOT)/glutamic-pyruvic transaminase (GPT) and liver fibrosis, and caused a significant downregulation in markers related to inflammation (IL-1ß), fibrogenesis (TGF-ß1, α-SMA, and COL1α1), autophagy (p62 and LC3B II), mitochondrial unfolded protein response (UPRmt; C/EBP homologous protein (CHOP), heat shock protein 60 (HSP60), and Lon protease-1 (LONP1, a mitochondrial protease), and PI3KP85α within the liver tissue. An in vitro luciferase reporter assay further confirmed that miR-29a mimic directly targets mRNA 3' untranslated region (UTR) of PI3KP85α to suppress its expression in HepG2 cell line. Our data provide new insights that therapeutic miR-29a improves cholestasis-induced hepatic inflammation and fibrosis and proteotstasis via blocking PI3KP85α, highlighting the potential of miR-29a targeted therapy for liver injury.


Asunto(s)
Colestasis/terapia , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Cirrosis Hepática/terapia , MicroARNs/metabolismo , Tratamiento con ARN de Interferencia/métodos , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Hep G2 , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA