Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
JCI Insight ; 7(10)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35472029

RESUMEN

Voltage-gated hydrogen channel 1 (Hvcn1) is a voltage-gated proton channel, which reduces cytosol acidification and facilitates the production of ROS. The increased expression of this channel in some cancers has led to proposing Hvcn1 antagonists as potential therapeutics. While its role in most leukocytes has been studied in depth, the function of Hvcn1 in T cells remains poorly defined. We show that Hvcn1 plays a nonredundant role in protecting naive T cells from intracellular acidification during priming. Despite sharing overall functional impairment in vivo and in vitro, Hvcn1-deficient CD4+ and CD8+ T cells display profound differences during the transition from naive to primed T cells, including in the preservation of T cell receptor (TCR) signaling, cellular division, and death. These selective features result, at least in part, from a substantially different metabolic response to intracellular acidification associated with priming. While Hvcn1-deficient naive CD4+ T cells reprogram to rescue the glycolytic pathway, naive CD8+ T cells, which express high levels of this channel in the mitochondria, respond by metabolically compensating mitochondrial dysfunction, at least in part via AMPK activation. These observations imply heterogeneity between adaptation of naive CD4+ and CD8+ T cells to intracellular acidification during activation.


Asunto(s)
Hidrógeno , Protones , Concentración de Iones de Hidrógeno , Recuento de Linfocitos , Transducción de Señal
2.
Nat Commun ; 11(1): 3595, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681081

RESUMEN

Endothelial barrier (EB) breaching is a frequent event during inflammation, and it is followed by the rapid recovery of microvascular integrity. The molecular mechanisms of EB recovery are poorly understood. Triggering of MHC molecules by migrating T-cells is a minimal signal capable of inducing endothelial contraction and transient microvascular leakage. Using this model, we show that EB recovery requires a CD31 receptor-induced, robust glycolytic response sustaining junction re-annealing. Mechanistically, this response involves src-homology phosphatase activation leading to Akt-mediated nuclear exclusion of FoxO1 and concomitant ß-catenin translocation to the nucleus, collectively leading to cMyc transcription. CD31 signals also sustain mitochondrial respiration, however this pathway does not contribute to junction remodeling. We further show that pathologic microvascular leakage in CD31-deficient mice can be corrected by enhancing the glycolytic flux via pharmacological Akt or AMPK activation, thus providing a molecular platform for the therapeutic control of EB response.


Asunto(s)
Células Endoteliales/metabolismo , Microvasos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Animales , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Masculino , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , beta Catenina/genética , beta Catenina/metabolismo
3.
Front Immunol ; 10: 271, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863398

RESUMEN

Protective immunity relies upon differentiation of T cells into the appropriate subtype required to clear infections and efficient effector T cell localization to antigen-rich tissue. Recent studies have highlighted the role played by subpopulations of tissue-resident memory (TRM) T lymphocytes in the protection from invading pathogens. The intestinal mucosa and associated lymphoid tissue are densely populated by a variety of resident lymphocyte populations, including αß and γδ CD8+ intraepithelial T lymphocytes (IELs) and CD4+ T cells. While the development of intestinal γδ CD8+ IELs has been extensively investigated, the origin and function of intestinal CD4+ T cells have not been clarified. We report that CCR9 signals delivered during naïve T cell priming promote the differentiation of a population of α4ß7+ IFN-γ-producing memory CD4+ T cells, which displays a TRM molecular signature, preferentially localizes to the gastrointestinal (GI) tract and associated lymphoid tissue and cannot be mobilized by remote antigenic challenge. We further show that this population shapes the immune microenvironment of GI tissue, thus affecting effector immunity in infection and cancer.


Asunto(s)
Quimiocinas CC/fisiología , Intestinos/inmunología , Linfocitos T/inmunología , Animales , Femenino , Memoria Inmunológica , Infecciones/inmunología , Interferón gamma/biosíntesis , Tejido Linfoide/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Receptores CCR/fisiología
4.
Nat Commun ; 9(1): 3083, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082772

RESUMEN

Cholesterol homeostasis has a pivotal function in regulating immune cells. Here we show that apolipoprotein E (apoE) deficiency leads to the accumulation of cholesterol in the cell membrane of dendritic cells (DC), resulting in enhanced MHC-II-dependent antigen presentation and CD4+ T-cell activation. Results from WT and apoE KO bone marrow chimera suggest that apoE from cells of hematopoietic origin has immunomodulatory functions, regardless of the onset of hypercholesterolemia. Humans expressing apoE4 isoform (ε4/3-ε4/4) have increased circulating levels of activated T cells compared to those expressing WT apoE3 (ε3/3) or apoE2 isoform (ε2/3-ε2/2). This increase is caused by enhanced antigen-presentation by apoE4-expressing DCs, and is reversed when these DCs are incubated with serum containing WT apoE3. In summary, our study identifies myeloid-produced apoE as a key physiological modulator of DC antigen presentation function, paving the way for further explorations of apoE as a tool to improve the management of immune diseases.


Asunto(s)
Presentación de Antígeno , Apolipoproteínas E/genética , Células Dendríticas/metabolismo , Activación de Linfocitos , Células Mieloides/metabolismo , Linfocitos T/metabolismo , Animales , Apolipoproteína E4/genética , Células de la Médula Ósea/citología , Diferenciación Celular , Movimiento Celular , Colesterol/metabolismo , Células Dendríticas/citología , Ácidos Grasos/metabolismo , Femenino , Células Madre Hematopoyéticas/citología , Antígenos de Histocompatibilidad Clase II , Humanos , Hipercolesterolemia/metabolismo , Complejo Mayor de Histocompatibilidad , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Oxiesteroles/química , Oxiesteroles/metabolismo , Fosfolípidos/química
5.
Immunity ; 47(5): 875-889.e10, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166588

RESUMEN

Migration of activated regulatory T (Treg) cells to inflamed tissue is crucial for their immune-modulatory function. While metabolic reprogramming during Treg cell differentiation has been extensively studied, the bioenergetics of Treg cell trafficking remains undefined. We have investigated the metabolic demands of migrating Treg cells in vitro and in vivo. We show that glycolysis was instrumental for their migration and was initiated by pro-migratory stimuli via a PI3K-mTORC2-mediated pathway culminating in induction of the enzyme glucokinase (GCK). Subsequently, GCK promoted cytoskeletal rearrangements by associating with actin. Treg cells lacking this pathway were functionally suppressive but failed to migrate to skin allografts and inhibit rejection. Similarly, human carriers of a loss-of-function GCK regulatory protein gene-leading to increased GCK activity-had reduced numbers of circulating Treg cells. These cells displayed enhanced migratory activity but similar suppressive function, while conventional T cells were unaffected. Thus, GCK-dependent glycolysis regulates Treg cell migration.


Asunto(s)
Glucoquinasa/fisiología , Glucólisis , Linfocitos T Reguladores/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígenos CD28/fisiología , Antígeno CTLA-4/fisiología , Células Cultivadas , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Diana Mecanicista del Complejo 2 de la Rapamicina/fisiología , Ratones , Ratones Endogámicos , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología
6.
Arthritis Rheumatol ; 68(8): 2044-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26992170

RESUMEN

OBJECTIVE: To investigate the molecular cause of persistent fevers in a patient returning from working overseas, in whom investigations for tropical diseases yielded negative results. METHODS: DNA was extracted from the patient's whole blood, leukocyte subpopulations, saliva, hair root, and sperm. The TNFRSF1A gene was analyzed by polymerase chain reaction (PCR), allele-specific PCR, Sanger sequencing, and next-generation sequencing. In silico molecular modeling was performed to predict the structural and functional consequences of the tumor necrosis factor receptor (TNFR) type I protein mutation in the extracellular domain. RESULTS: Sanger sequencing corroborated by allele-specific PCR detected a novel in-frame deletion of 24 nucleotides (c.255_278del) in the TNFRSF1A gene, and this was subsequently confirmed using next-generation sequencing methods (targeted sequencing and amplicon-based deep sequencing). Results of amplicon-based deep sequencing revealed variable frequency of the mutant allele among different cell lines, including sperm, thus supporting the presence of gonosomal TNFRSF1A mosaicism. The patient had a complete response to treatment with interleukin-1 (IL-1) blockade, with resolution of symptoms and normalization of acute-phase protein levels. CONCLUSION: We describe the first case of gonosomal TNFRSF1A mosaicism in a patient with TNFR-associated periodic syndrome (TRAPS), which was attributable to a novel, somatic 24-nucleotide in-frame deletion. The clinical picture in this patient, including the complete response to IL-1 blockade, was typical of that found in TRAPS. This case adds TRAPS to the list of dominantly inherited autoinflammatory diseases reported to be caused by somatic (or postzygotic) mutation.


Asunto(s)
Fiebre/genética , Enfermedades Autoinflamatorias Hereditarias/genética , Mosaicismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Eliminación de Secuencia , Adulto , Humanos , Masculino
7.
Proc Natl Acad Sci U S A ; 112(43): E5815-24, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26392551

RESUMEN

Constitutive resistance to cell death induced by inflammatory stimuli activating the extrinsic pathway of apoptosis is a key feature of vascular endothelial cells (ECs). Although this property is central to the maintenance of the endothelial barrier during inflammation, the molecular mechanisms of EC protection from cell-extrinsic, proapoptotic stimuli have not been investigated. We show that the Ig-family member CD31, which is expressed by endothelial but not epithelial cells, is necessary to prevent EC death induced by TNF-α and cytotoxic T lymphocytes in vitro. Combined quantitative RT-PCR array and biochemical analysis show that, upon the engagement of the TNF receptor with TNF-α on ECs, CD31 becomes activated and, in turn, counteracts the proapoptotic transcriptional program induced by TNF-α via activation of the Erk/Akt pathway. Specifically, Akt activation by CD31 signals prevents the localization of the forkhead transcription factor FoxO3 to the nucleus, thus inhibiting transcription of the proapoptotic genes CD95/Fas and caspase 7 and de-repressing the expression of the antiapoptotic gene cFlar. Both CD31 intracellular immunoreceptor tyrosine-based inhibition motifs are required for its prosurvival function. In vivo, CD31 gene transfer is sufficient to recapitulate the cytoprotective mechanisms in CD31(-) pancreatic ß cells, which become resistant to immune-mediated rejection when grafted in fully allogeneic recipients.


Asunto(s)
Endotelio Vascular/inmunología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/inmunología , Animales , Ratones , Ratones Noqueados , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Linfocitos T Citotóxicos/inmunología , Factor de Necrosis Tumoral alfa/fisiología
8.
Immunity ; 42(6): 1087-99, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26070483

RESUMEN

Effector-T-cell-mediated immunity depends on the efficient localization of antigen-primed lymphocytes to antigen-rich non-lymphoid tissue, which is facilitated by the expression of a unique set of "homing" receptors acquired by memory T cells. We report that engagement of the hepatocyte growth factor (HGF) receptor c-Met by heart-produced HGF during priming in the lymph nodes instructs T cell cardiotropism, which was associated with a specialized homing "signature" (c-Met(+)CCR4(+)CXCR3(+)). c-Met signals facilitated T cell recruitment to the heart via the chemokine receptor CCR5 by inducing autocrine CCR5 ligand release. c-Met triggering was sufficient to support cardiotropic T cell recirculation, while CCR4 and CXCR3 sustained recruitment during heart inflammation. Transient pharmacological blockade of c-Met during T cell priming led to enhanced survival of heart, but not skin, allografts associated with impaired localization of alloreactive T cells to heart grafts. These findings suggest c-Met as a target for development of organ-selective immunosuppressive therapies.


Asunto(s)
Rechazo de Injerto/prevención & control , Trasplante de Corazón , Corazón/fisiología , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Linfocitos T/fisiología , Animales , Comunicación Autocrina , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Cultivadas , Rechazo de Injerto/etiología , Rechazo de Injerto/genética , Humanos , Memoria Inmunológica , Indoles/farmacología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Ratones , Ratones SCID , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , ARN Interferente Pequeño/genética , Receptores CCR5/metabolismo , Receptores de Quimiocina/metabolismo , Receptores Mensajeros de Linfocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sulfonas/farmacología , Linfocitos T/efectos de los fármacos
9.
Br J Pharmacol ; 146(3): 324-32, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16041400

RESUMEN

The platelet-lowering drug anagrelide inhibits bone marrow megakaryocytopoiesis by an unknown mechanism. Recently, it was found that anagrelide is bio-transformed in humans into two major metabolites (6,7-dichloro-3-hydroxy-1,5 dihydro-imidazo[2,1-b]quinazolin-2-one (BCH24426) and 2-amino-5,6-dichloro-3,4,-dihydroquinazoline (RL603). Whether these metabolites have biological activities that may underlie the mode of action of the parent drug is presently unclear. To clarify this question here we have compared the activities of anagrelide, BCH24426 and RL603 on the growth and differentiation of CD34(+) haematopoietic progenitor cells in liquid culture and on the migration of differentiated megakaryocytes. Incubation with either anagrelide, BCH24426 or RL603 did not affect the early expansion of CD34(+) cells stimulated by thrombopoietin. In contrast, both anagrelide and BCH24426 potently inhibited the development of megakaryocytes (IC(50) +/- s.e.m. = 26 +/- 4 and 44 +/- 6 nM, respectively), whereas RL603 showed no significant effect. Anagrelide and BCH24426 did not affect erythroid or myelomonocytic differentiation stimulated by erythropoietin or granulocyte-macrophage colony-stimulating factor, demonstrating the selectivity of these compounds against the megakaryocytic lineage. Neither anagrelide nor its metabolites showed a significant effect on the migratory response of megakaryocytes towards stromal cell-derived factor-1alpha. Although BCH24426 was shown to be considerably more potent than anagrelide as an inhibitor of phosphodiesterase type III (PDEIII) (IC(50) = 0.9 vs 36 nM) this activity did not correlate with the potency of inhibition of megakaryocyte development. Furthermore, other PDEIII inhibitors of widely differing potency were shown to have negligible effects on megakaryocytopoiesis. Taken together our results demonstrate that anagrelide and BCH24426 target a cellular event involved specifically in the megakaryocyte differentiation programme, which is independent of PDEIII inhibition.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Imidazoles/farmacología , Megacariocitos/efectos de los fármacos , Quinazolinas/farmacología , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Antígenos CD34 , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Fibrinolíticos/farmacología , Células Madre Hematopoyéticas/citología , Humanos , Megacariocitos/citología , Inhibidores de Agregación Plaquetaria/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA