Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Colloids Surf B Biointerfaces ; 238: 113881, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608460

RESUMEN

Hydrogels as wound dressing have attracted extensive attention in past decade because they can provide moist microenvironment to promote wound healing. Herein, this research designed a multifunctional hydrogel with antibacterial property and antioxidant activity fabricated from quaternary ammonium bearing light emitting quaternized TPE-P(DAA-co-DMAPMA) (QTPDD) and poly(aspartic hydrazide) (PAH). The protocatechuic aldehyde (PCA) grafted to the hydrogel through dynamic bond endowed the hydrogel with antioxidant activity and the tranexamic acid (TXA) was loaded to enhance the hemostatic performance. The hydrogel possesses preferable gelation time for injectable application, good antioxidant property and tissue adhesion, improved hemostatic performance fit for wound repairing. Furthermore, the hydrogel has excellent antimicrobial property to both E. coli and S. aureus based on quaternary ammonium structure. The hydrogel also showed good biocompatibility and the in vivo experiments proved this hydrogel can promote the wound repairing rate. This study suggests that TXA/hydrogel with quaternary ammonium structure and dynamic grafted PCA have great potential in wound healing applications.


Asunto(s)
Antibacterianos , Antioxidantes , Escherichia coli , Hidrogeles , Staphylococcus aureus , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Hidrogeles/química , Hidrogeles/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Animales , Hemostáticos/química , Hemostáticos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Polímeros/química , Polímeros/farmacología , Acrilamidas/química , Acrilamidas/farmacología , Péptidos/farmacología , Péptidos/química
2.
Exp Ther Med ; 27(6): 245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38655040

RESUMEN

[This retracts the article DOI: 10.3892/etm.2019.7644.].

3.
Drug Chem Toxicol ; : 1-12, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647073

RESUMEN

The objective of this study was to examine the potential protective role of naringenin against the harmful effects induced by cadmium in KGN cell line. Cell viability was evaluated by cell counting kit-8 assay. Caspase-3/-9 activities were determined by caspase-3/-9 activity assay kits, respectively. Intracellular reactive oxygen species (ROS) level was detected by ROS-Glo™ H2O2 Assay, antioxidant capacity was determined by a total antioxidant capacity assay kit. Mitochondrial membrane potential (MMP), ATP level, and ATP synthase activity were determined by JC-1, ATP assay kit, and ATP synthase activity assay kit, respectively. The mRNA expression was determined by qRT-PCR. Cadmium reduced cell viability and increased caspase-3/-9 activities in a concentration-dependent manner. Naringenin improved cell viability and reduced caspase-3/-9 activities in cadmium-stimulated KGN cells in a concentration-dependent manner. Cadmium diminished the antioxidant capacity, increased ROS production, and induced mitochondrial dysfunction in KGN cells. These effects were ameliorated by naringenin treatment in a concentration-dependent manner. Furthermore, naringenin reduced the levels of pro-inflammatory cytokines in KGN cells exposed to cadmium. SIRT1 knockdown downregulated its expression in KGN cells and compromised the protective effects of naringenin on cell viability and caspase-3/-9 activities in cadmium-stimulated KGN cells. Naringenin prevented the reduction of MMP, ATP levels, and ATP synthase activity in cadmium-stimulated KGN cells in a concentration-dependent manner. However, these protective effects were significantly reversed by SIRT1 knockdown. In conclusion, this study suggests that naringenin protects against cadmium-induced damage by regulating oxidative stress, mitochondrial function, and inflammation in KGN cells, with SIRT1 playing a potential mediating role.

4.
Eur J Nucl Med Mol Imaging ; 51(6): 1713-1724, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38216779

RESUMEN

PURPOSE: Enzymolysis clearance strategy, characterized by releasing the non-reabsorbable radioactive fragment under the specific cleavage of enzymes, is confirmed to be a safe and effective way to reduce the renal radioactivity accumulation in mice. However, the effectiveness of this strategy in humans remains unknown. Human epidermal growth factor receptor 2 (HER2) is overexpressed in various types of tumors, and radiolabeled HER2 Affibody is believed to be an attractive tool for HER2-targeted theranostics. However, its wide application is limited by the high and persistent renal uptake. In this study, we intend to validate the effectiveness of enzymolysis clearance strategy in reducing renal accumulation by using a modified HER2 Affibody. MATERIALS AND METHODS: A new HER2 Affibody ligand, NOTA-MVK-ZHER2:2891, containing a cleavable Met-Val-Lys (MVK) linker was synthesized and labeled with 68Ga. The microPET imaging study was performed in SKOV-3 tumor mice to assess the uptakes of the control ligand and the MVK one in tumors and kidneys. Seven healthy volunteers were included for biodistribution and dosimetric studies with both the control and MVK ligands performed 1 week apart. Urine and blood samples from healthy volunteers were collected for in vivo metabolism study of the two ligands. Four HER2-positive and two HER2-negative patients were recruited for [68Ga]Ga-NOTA-MVK-ZHER2:2891 PET/CT imaging at 2 and 4 h post-injection (p.i.). RESULTS: [68Ga]Ga-NOTA-MVK-ZHER2:2891 was stable both in PBS and in mouse serum. MicroPET images showed that the tumor uptake of [68Ga]Ga-NOTA-MVK-ZHER2:2891 was comparable to that of [68Ga]Ga-NOTA-ZHER2:2891 at all the time points, while the kidney uptake was significantly reduced 40 min p.i. (P < 0.05). The biodistribution study in healthy volunteers showed that the kidney uptake of MVK ligand was significantly lower than that of the control ligand at 1 h p.i. (P < 0.05), with the SUVmean of 34.3 and 45.8, respectively, while the uptakes of the two ligands in the other organs showed negligible difference. The effective doses of the MVK ligand and the control one were 26.1 and 28.7 µSv/MBq, respectively. The enzymolysis fragment of [68Ga]Ga-NOTA-Met-OH was observed in the urine samples of healthy volunteers injected with the MVK ligand, indicating that the enzymolysis clearance strategy worked in humans. The PET/CT study of patients showed that the range of SUVmax of HER2-positive lesions was 9.4-21, while that of HER2-negative lesions was 2.7-6.2, which suggested that the MVK modification did not affect the ability of ZHER2:2891 structure to bind with HER2. CONCLUSION: We for the first time demonstrated that enzymolysis clearance strategy can effectively reduce renal radioactivity accumulation in humans. This strategy is expected to decrease renal radiation dose of peptide and small protein-based radiotracers, especially in the field of radionuclide therapy.


Asunto(s)
Radioisótopos de Galio , Riñón , Neoplasias , Receptor ErbB-2 , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Riñón/metabolismo , Riñón/efectos de la radiación , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Radiofármacos/química , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusión/farmacocinética , Distribución Tisular , Neoplasias/diagnóstico por imagen , Neoplasias/genética
5.
Pigment Cell Melanoma Res ; 37(2): 316-328, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37985430

RESUMEN

Melanoma is an aggressive malignant tumor with a poor prognosis. Vemurafenib (PLX4032, vem) is applied to specifically treat BRAF V600E-mutated melanoma patients. However, prolonged usage of vem makes patients resistant to the drug and finally leads to clinical failure. We previously tested the combination regimen of tubulin inhibitor VERU-111 with vem, as well as USP14 selective inhibitor b-AP15 in combination with vem, both of which have showed profound therapeutic effects in overcoming vem resistance in vitro and in vivo. Most importantly, we discovered that vem-resistant melanoma cell lines highly expressed E3 ligase SKP2 and DUB enzyme USP14, and we have demonstrated that USP14 directly interacts and stabilizes SKP2, which contributes to vem resistance. These works give us a clue that USP14 might be a promising target to overcome vem resistance in melanoma. MitoCur-1 is a curcumin derivative, which was originally designed to specifically target tumor mitochondria inducing redox imbalance, thereby promoting tumor cell death. In this study, we have demonstrated that it can work as a novel USP14 inhibitor, and thus bears great potential in providing an anti-tumor effect and sensitizing vem-resistant cells by inducing ferroptosis in melanoma. Application of MitoCur-1 dramatically induces USP14 inhibition and inactivation of GPX4 enzyme, meanwhile, increases the depletion of GSH and decreases SLC7A11 expression level. As a result, ferrous iron-dependent lipid ROS accumulated in the cell, inducing ferroptosis, thus sensitizes the vem-resistant melanoma cell. Interestingly, overexpression of USP14 antagonized all the ferroptosis cascade events induced by MitoCur-1, therefore, we conclude that MitoCur-1 induces ferroptosis through inhibition of USP14. We believe that by inhibition of USP14, vem resistance can be reversed and will finally benefit melanoma patients in future.


Asunto(s)
Ferroptosis , Melanoma , Humanos , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Indoles/farmacología , Resistencia a Antineoplásicos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas B-raf , Ubiquitina Tiolesterasa
6.
Open Life Sci ; 18(1): 20220768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035047

RESUMEN

Non-small cell lung cancer (NSCLC) is often driven by mutations in the epidermal growth factor receptor (EGFR) gene. However, rare mutations such as G719X and S768I lack standard anti-EGFR targeted therapies. Understanding the structural differences between wild-type EGFR and these rare mutants is crucial for developing EGFR-targeted drugs. We performed a systematic analysis using molecular dynamics simulations, essential dynamics (ED), molecular mechanics Poisson-Boltzmann surface area, and free energy calculation methods to compare the kinetic properties, molecular motion, and free energy distribution between wild-type EGFR and the rare mutants' structures G719X-EGFR, S768I-EGFR, and G719X + S768I-EGFR. Our results showed that S768I-EGFR and G719X + S768I-EGFR have higher global and local conformational flexibility and lower thermal and global structural stability than WT-EGFR. ED analysis revealed different molecular motion patterns between S768I-EGFR, G719X + S768I-EGFR, and WT-EGFR. The A-loop and αC-helix, crucial structural elements related to the active state, showed a tendency toward active state development, providing a molecular mechanism explanation for NSCLC caused by EGFR S768I and EGFR G719C + S768I mutations. The present study may be helpful in the development of new EGFR-targeted drugs based on the structure of rare mutations. Our findings may aid in developing new targeted treatments for patients with EGFR S768I and EGFR G719X + S768I mutations.

7.
J Nucl Med ; 64(12): 1880-1888, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827842

RESUMEN

Kirsten rat sarcoma (KRAS) mutations are an important marker for tumor-targeted therapy. In this study, we sought to develop a KRASG12C oncoprotein-targeted PET tracer and to evaluate its translational potential for noninvasive imaging of the KRASG12C mutation in non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) patients. Methods: [18F]PFPMD was synthesized on the basis of AMG510 (sotorasib) by attaching a polyethylene glycol chain to the quinazolinone structure. The binding selectivity and imaging potential of [18F]PFPMD were verified by cellular uptake, internalization, and blocking (H358: KRASG12C mutation; A549: non-KRASG12C mutation) studies, as well as by a small-animal PET/CT imaging study on tumor-bearing mice. Five healthy volunteers were enrolled to assess the safety, biodistribution, and dosimetry of [18F]PFPMD. Subsequently, 14 NSCLC or CRC patients with or without the KRASG12C mutation underwent [18F]PFPMD and [18F]FDG PET/CT imaging. The SUVmax of tumor uptake of [18F]PFPMD was measured and compared between patients with and without the KRASG12C mutation. Results: [18F]PFPMD was obtained with a high radiochemical yield, radiochemical purity, and stability. The protein-binding assay showed that [18F]PFPMD selectively binds to the KRASG12C protein. [18F]PFPMD uptake was significantly higher in H358 than in A549 and was decreased by pretreatment with AMG510 (H358 vs. A549: 3.22% ± 0.28% vs. 2.50% ± 0.25%, P < 0.05; block: 2.06% ± 0.13%, P < 0.01). Similar results were observed in tumor-bearing mice on PET imaging (H358 vs. A549: 3.93% ± 0.24% vs. 2.47% ± 0.26% injected dose/g, P < 0.01; block: 2.89% ± 0.29% injected dose/g; P < 0.05). [18F]PFPMD was safe in humans and was excreted primarily by the gallbladder and intestines. The whole-body effective dose was comparable to that of [18F]FDG. The accumulation of [18F]PFPMD in KRASG12C mutation tumors was significantly higher than that in non-KRASG12C mutation tumors (SUVmax: 3.73 ± 0.58 vs. 2.39 ± 0.22, P < 0.01) in NSCLC and CRC patients. Conclusion: [18F]PFPMD is a safe and promising PET tracer for noninvasive screening of the KRASG12C mutation status in NSCLC and CRC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Colorrectales , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Fluorodesoxiglucosa F18/uso terapéutico , Distribución Tisular , Tomografía de Emisión de Positrones , Mutación , Pulmón/patología , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/genética
8.
Toxicol Res ; 39(3): 455-475, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37398567

RESUMEN

Lung cancer is the most often reported cancer with a terrible prognosis worldwide. Flavonoid metal complexes have exhibited potential chemotherapeutic effects with substantially low adverse effects. This study investigated the chemotherapeutic effect of the ruthenium biochanin-A complex on lung carcinoma in both in vitro and in vivo model systems. The synthesized organometallic complex was characterized via UV‒visible spectroscopy, FTIR, mass spectrometry, and scanning electron microscopy. Moreover, the DNA binding activity of the complex was determined. The in vitro chemotherapeutic assessment was performed on the A549 cell line through MTT assay, flow cytometry, and western blot analysis. An in vivo toxicity study was performed to determine the chemotherapeutic dose of the complex, and subsequently, chemotherapeutic activity was assessed in benzo-α-pyrene-induced lung cancer mouse model by evaluating the histopathology, immunohistochemistry, and TUNEL assays. The IC50 value of the complex in A549 cells was found to be 20 µM. The complex demonstrated significant apoptosis induction, enhanced caspase-3 expression and cell cycle arrest with downregulated PI3K, PPARγ, TGF-ß, and TNF-α expression in A549 cells. The in vivo study suggested that ruthenium biochanin-A therapy restored the morphological architecture of lung tissue in a benzo-α-pyrene-induced lung cancer model and inhibited the expression of Bcl2. Additionally, increased apoptotic events were identified with upregulation of caspase-3 and p53 expression. In conclusion, the ruthenium biochanin-A complex successfully amelioratedlung cancer incidence in both in vitro and in vivo models through the alteration of the TGF-ß/PPARγ/PI3K/TNF-α axis with the induction of the p53/caspase-3-mediated apoptotic pathway.

9.
Mol Imaging Biol ; 25(5): 857-866, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37407745

RESUMEN

PURPOSE: This study aims to compare the diagnostic efficacy of 68Ga-FAPI-04 PET and 18F-FDG PET for detecting anastomotic recurrence in postoperative patients with gastrointestinal cancer, and to characterize the signal pattern over time at surgical wounds on both PET imaging. METHODS: Gastrointestinal cancer patients who planned to 68Ga-FAPI-04 and 18F-FDG PET/CT imaging for postoperative surveillance were involved. The SUVmax at surgical wounds were assessed. Endoscopic pathology confirmed anastomotic recurrence or it was ruled out by imaging and clinical follow-up. The sensitivity, specificity, positive and negative predictive values (PPV and NPV), and accuracy of the two PET imaging in detecting anastomotic recurrence were compared. Relationships between tracer uptake at surgical wounds and postoperative time were also analyzed. RESULTS: Compared with non-recurrent patients, the recurrent patients exhibited a significantly higher anastomotic SUVmax on 68Ga-FAPI-04 PET (SUVmax: 9.92 ± 4.36 vs. 2.81 ± 1.86, P = 0.002). Sensitivity, specificity, PPV, NPV, and accuracy of detecting anastomotic recurrence were 100.0%, 87.3%, 41.7%, 100.0%, and 88.3% for 68Ga-FAPI-04 PET, and 60.0%, 81.8%, 23.1%, 95.7%, and 80.0% for 18F-FDG PET, respectively. Although 68Ga-FAPI-04 PET signal at surgical wounds showed a slight trend to decrease with time, no statistical difference was observed over months post-surgery (P > 0.05). CONCLUSIONS: Both tracers displayed high NPVs in identifying anastomotic recurrence with a higher sensitivity to 68Ga-FAPI-04. Tracer uptake at anastomotic sites does not decrease significantly over time, which results in low PPVs for both PET. Therefore, it is difficult to differentiate anastomotic recurrence from inflammation on either PET imaging.

10.
Front Aging Neurosci ; 15: 1187684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448687

RESUMEN

Introduction: The ventral tegmental area (VTA) is less affected compared to substantia nigra pars compacta (SNc) in Parkinson's disease (PD). This study aimed to quantitatively evaluate iron content in the VTA across different stages of PD in order to help explain the selective loss of dopamine neurons in PD. Methods: Quantitative susceptibility mapping (QSM) data were obtained from 101 PD patients, 35 idiopathic rapid eye movement sleep behavior disorder (RBD) patients, and 62 healthy controls (HCs). The mean QSM values in the VTA and SNc were calculated and compared among the groups. Results: Both RBD and PD patients had increased iron values in the bilateral SNc compared with HCs. RBD and PD patients in the Hoehn-Yahr (H & Y) stage 1 did not show elevated iron values in the VTA, while PD patients with more than 1.5 H & Y staging had increased iron values in bilateral VTA compared to HCs. Discussion: This study shows that there is no increased iron accumulation in the VTA during the prodromal and early clinical stages of PD, but iron deposition increases significantly as the disease becomes more severe.

11.
J Neurol ; 270(10): 4959-4967, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37365282

RESUMEN

With complicated conditions and a large number of potentially causative genes, the diagnosis of a patient with complex inherited peripheral neuropathies (IPNs) is challenging. To provide an overview of the genetic and clinical features of 39 families with complex IPNs from central south China and to optimize the molecular diagnosis approach to this group of heterogeneous diseases, a total of 39 index patients from unrelated families were enrolled, and detailed clinical data were collected. TTR Sanger sequencing, hereditary spastic paraplegia (HSP) gene panel, and dynamic mutation detection in spinocerebellar ataxia (SCAs) were performed according to the respective additional clinical features. Whole-exome sequencing (WES) was used in patients with negative or unclear results. Dynamic mutation detection in NOTCH2NLC and RCF1 was applied as a supplement to WES. As a result, an overall molecular diagnosis rate of 89.7% was achieved. All 21 patients with predominant autonomic dysfunction and multiple organ system involvement carried pathogenic variants in TTR, among which nine had c.349G > T (p.A97S) hotspot variants. Five out of 7 patients (71.4%) with muscle involvement harbored biallelic pathogenic variants in GNE. Five out of 6 patients (83.3%) with spasticity reached definite genetic causes in SACS, KIF5A, BSCL2, and KIAA0196, respectively. NOTCH2NLC GGC repeat expansions were identified in all three cases accompanied by chronic coughing and in one patient accompanied by cognitive impairment. The pathogenic variants, p.F284S and p.G111R in GNE, and p.K4326E in SACS, were first reported. In conclusion, transthyretin amyloidosis with polyneuropathy (ATTR-PN), GNE myopathy, and neuronal intranuclear inclusion disease (NIID) were the most common genotypes in this cohort of complex IPNs. NOTCH2NLC dynamic mutation testing should be added to the molecular diagnostic workflow. We expanded the genetic and related clinical spectrum of GNE myopathy and ARSACS by reporting novel variants.


Asunto(s)
Neuropatías Amiloides Familiares , Ataxias Espinocerebelosas , Humanos , Mutación/genética , Espasticidad Muscular , Cinesinas/genética
12.
PLoS Negl Trop Dis ; 17(5): e0011385, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37253066

RESUMEN

Schistosomiasis is a serious and neglected disease with a high prevalence in tropical and subtropical countries. The primary pathology of hepatic schistosomiasis caused by Schistosoma japonicum (S. japonicum) or Schistosoma mansoni (S. mansoni) infection is egg-induced granuloma and subsequent fibrosis in the liver. Activation of hepatic stellate cells (HSCs) is the central driver of liver fibrosis. Macrophages (Mφ), making up 30% of cells in hepatic granulomas, directly or indirectly regulate HSC activation by paracrine mechanisms, via secreting cytokines or chemokines. Currently, Mφ-derived extracellular vesicles (EVs) are broadly involved in cell communication with adjacent cell populations. However, whether Mφ-derived EVs could target neighboring HSCs to regulate their activation during schistosome infection remains largely unknown. Schistosome egg antigen (SEA) is considered to be the main pathogenic complex mixture involved in liver pathology. Here, we demonstrated that SEA induced Mφ to produce abundant extracellular vesicles, which directly activated HSCs by activating their autocrine TGF-ß1 signaling. Mechanistically, EVs derived from SEA-stimulated Mφ contained increased miR-33, which were transferred into HSCs and subsequently upregulated autocrine TGF-ß1 in HSCs through targeting and downregulating SOCS3 expression, thereby promoting HSC activation. Finally, we validated that EVs derived from SEA-stimulated Mφ utilized enclosed miR-33 to promote HSC activation and liver fibrosis in S. japonicum-infected mice. Overall, our study indicates that Mφ-derived EVs play important roles in the paracrine regulation of HSCs during the progression of hepatic schistosomiasis, representing a potential target for the prevention of liver fibrosis in hepatic schistosomiasis.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Schistosoma japonicum , Esquistosomiasis , Animales , Ratones , Factor de Crecimiento Transformador beta1 , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/patología , Esquistosomiasis/patología , Hígado/patología , Schistosoma japonicum/fisiología , MicroARNs/genética , MicroARNs/metabolismo
13.
Methods Mol Biol ; 2620: 123-127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010758

RESUMEN

Here, we describe arginylation assays performed on peptide arrays immobilized on cellulose membranes via chemical synthesis. In this assay, it is possible to simultaneously compare arginylation activity on hundreds of peptide substrates to analyze the specificity of arginyltransferase ATE1 toward its target site(s) and the amino acid sequence context. This assay was successfully employed in prior studies to dissect the arginylation consensus site and enable predictions of arginylated proteins encoded in eukaryotic genomes.


Asunto(s)
Aminoaciltransferasas , Procesamiento Proteico-Postraduccional , Proteolisis , Aminoaciltransferasas/química , Péptidos/metabolismo , Arginina/metabolismo
14.
Front Neurosci ; 17: 1092539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777641

RESUMEN

For decades, neuromodulation technology has demonstrated tremendous potential in the treatment of neuropsychiatric disorders. However, challenges such as being less intrusive, more concentrated, using less energy, and better public acceptance, must be considered. Several novel and optimized methods are thus urgently desiderated to overcome these barriers. In specific, temporally interfering (TI) electrical stimulation was pioneered in 2017, which used a low-frequency envelope waveform, generated by the superposition of two high-frequency sinusoidal currents of slightly different frequency, to stimulate specific targets inside the brain. TI electrical stimulation holds the advantages of both spatial targeting and non-invasive character. The ability to activate deep pathogenic targets without surgery is intriguing, and it is expected to be employed to treat some neurological or psychiatric disorders. Recently, efforts have been undertaken to investigate the stimulation qualities and translation application of TI electrical stimulation via computational modeling and animal experiments. This review detailed the most recent scientific developments in the field of TI electrical stimulation, with the goal of serving as a reference for future research.

15.
J Neurol Neurosurg Psychiatry ; 94(6): 436-447, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36650038

RESUMEN

BACKGROUND: The pathogenic missense mutations of the gelsolin (GSN) gene lead to familial amyloidosis of the Finnish type (FAF); however, our previous study identified GSN frameshift mutations existed in patients with Alzheimer's disease (AD). The GSN genotype-phenotype heterogeneity and the role of GSN frameshift mutations in patients with AD are unclear. METHOD: In total, 1192 patients with AD and 1403 controls were screened through whole genome sequencing, and 884 patients with AD were enrolled for validation. Effects of GSN mutations were evaluated in vitro. GSN, Aß42, Aß40 and Aß42/40 were detected in both plasma and cerebrospinal fluid (CSF). RESULTS: Six patients with AD with GSN P3fs and K346fs mutations (0.50%, 6/1192) were identified, who were diagnosed with AD but not FAF. In addition, 13 patients with AD with GSN frameshift mutations were found in the validation cohort (1.47%, 13/884). Further in vitro experiments showed that both K346fs and P3fs mutations led to the GSN loss of function in inhibiting Aß-induced toxicity. Moreover, a higher level of plasma (p=0.001) and CSF (p=0.005) GSN was observed in AD cases than controls, and a positive correlation was found between the CSF GSN and CSF Aß42 (r=0.289, p=0.009). Besides, the GSN level was initially increasing and then decreasing with the disease course and cognitive decline. CONCLUSIONS: GSN frameshift mutations may be associated with AD. An increase in plasma GSN is probably a compensatory reaction in AD, which is a potential biomarker for early AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Mutación del Sistema de Lectura , Disfunción Cognitiva/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
17.
Gene ; 860: 147229, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36717040

RESUMEN

BACKGROUND: The variant m.3571_3572insC/MT-ND1 thus far only reported in oncocytic tumors of different tissues. However, the role of m.3571_3572insC in inherited mitochondrial diseases has yet to be elucidated. METHODS: A patient diagnosed with MELAS syndrome was recruited, and detailed medical records were collected and reviewed. The muscle was biopsied for mitochondrial respiratory chain enzyme activity. Series of fibroblast clones bearing different m.3571_3572insC variant loads were generated from patient-derived fibroblasts and subjected to functional assays. RESULTS: Complex I deficiency was confirmed in the patient's muscle via mitochondrial respiratory chain enzyme activity assay. The m.3571_3572insC was filtered for the candidate variant of the patient according to the guidelines for mitochondrial mRNA variants interpretation. Three cell clones with different m.3571_3572insC variant loads were generated to evaluate mitochondrial function. Blue native PAGE analysis revealed that m.3571_3572insC caused a deficiency in the mitochondrial complex I. Oxygen consumption rate, ATP production, and lactate assays found an impairment of cellular bioenergetic capacity due to m.3571_3572insC. Mitochondrial membrane potential was decreased, and mitochondrial reactive oxygen species production was increased with the variant of m.3571_3572insC. According to the competitive cell growth assay, the mutant cells had impaired cell growth capacity compared to wild type. CONCLUSIONS: A novel variant m.3571_3572insC was identified in a patient diagnosed with MELAS syndrome, and the variant impaired mitochondrial respiration by decreasing the activity of complex I. In conclusion, the genetic spectrum of mitochondrial diseases was expanded by including m.3571_3572insC/MT-ND1.


Asunto(s)
Síndrome MELAS , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Síndrome MELAS/patología , Enfermedades Mitocondriales/genética , Mutación , NADH Deshidrogenasa/genética , Mutación del Sistema de Lectura
18.
Front Mol Neurosci ; 15: 954167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324524

RESUMEN

Objective: Altered expression patterns of Na+-K+-2Cl- (NKCC1) and K+-Cl- (KCC2) co-transporters have been implicated in the pathogenesis of epilepsy. Here, we assessed the effects of imbalanced NKCC1 and KCC2 on γ-aminobutyric acidergic (GABAergic) neurotransmission in certain brain regions involved in human focal cortical dysplasia (FCD). Materials and methods: We sought to map a micro-macro neuronal network to better understand the epileptogenesis mechanism. In patients with FCD, we resected cortical tissue from the seizure the onset zone (SOZ) and the non-seizure onset zone (non-SOZ) inside the epileptogenic zone (EZ). Additionally, we resected non-epileptic neocortical tissue from the patients with mesial temporal lobe epilepsy (MTLE) as control. All of tissues were analyzed using perforated patch recordings. NKCC1 and KCC2 co-transporters expression and distribution were analyzed by immunohistochemistry and western blotting. Results: Results revealed that depolarized GABAergic signals were observed in pyramidal neurons in the SOZ and non-SOZ groups compared with the control group. The total number of pyramidal neurons showing GABAergic spontaneous postsynaptic currents was 11/14, 7/17, and 0/12 in the SOZ, non-SOZ, and control groups, respectively. The depolarizing GABAergic response was significantly dampened by the specific NKCC1 inhibitor bumetanide (BUM). Patients with FCD exhibited higher expression and internalized distribution of KCC2, particularly in the SOZ group. Conclusion: Our results provide evidence of a potential neurocircuit underpinning SOZ epileptogenesis and non-SOZ seizure susceptibility. Imbalanced function of NKCC1 and KCC2 may affect chloride ion homeostasis in neurons and alter GABAergic inhibitory action, thereby contributing to epileptogenesis in FCDs. Maintaining chloride ion homeostasis in the neurons may represent a new avenue for the development of novel anti-seizure medications (ASMs).

19.
Pharmacotherapy ; 42(12): 898-904, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36349792

RESUMEN

STUDY OBJECTIVE: To compare rates of catheter-related bloodstream infections (CR-BSI) in pediatric patients who received parenteral nutrition (PN) with either soybean oil-based intravenous fat emulsion (SO-IFE) or mixed oil-IFE (MO-IFE). We hypothesized that the use of MO-IFE would be independently associated with reduced infection rates compared with SO-IFE. DESIGN: Retrospective cohort study. SETTING: Tertiary referral children's hospital and its associated gastrointestinal rehabilitation clinic (01 January, 2015-31 July, 2019). PATIENTS: Days of IFE exposure were counted for patients aged <18 years on IFE initiated during the review period, who had a central venous catheter (CVC) placed for PN administration, received IFE at least three times weekly, and for at least 7 days. MEASUREMENTS: The primary outcome included total and categorical CR-BSI rates expressed as the average with standard error (SE) number of infections per 1000 fat emulsion days. The following categories were specified: Candida albicans, non-albicans Candida spp., coagulase-negative Staphylococcus (CoNS), Enterobacterales, methicillin-resistant S. aureus, methicillin-susceptible S. aureus, and Pseudomonadales. Average infection rate comparisons were quantified as incidence rate ratios (IRR) using generalized linear mixed modeling with a Poisson distribution. MAIN RESULTS: Seven hundred and forty-three SO-IFE and 450 MO-IFE exposures were reviewed from 1131 patients, totaling 37,599 and 19,796 days of therapy, respectively. From those found significantly different, the average rate of infections with CoNS was 3.58 (SE 0.5)/1000 days of SO-IFE and 1.39 (SE 0.45)/1000 days of MO-IFE (IRR [95% confidence interval, CI]: 0.27 [0.16-0.46]; p < 0.01). Total average rates of infection were 7.33 (SE 0.76)/1000 days of SO-IFE and 4.52 (SE 0.75)/1000 days of MO-IFE (IRR [95% CI]: 0.60 [0.44-0.81]; p < 0.01). Other factors associated with higher infection rates include female gender, neonatal age, and inpatient-only IFE exposure. CONCLUSIONS: Receipt of MO-IFE was associated with lower rates of CoNS and total CR-BSIs compared with SO-IFE in pediatric patients. These findings could have major implications on IFE selection for pediatric patients receiving PN.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Sepsis , Recién Nacido , Humanos , Femenino , Niño , Emulsiones Grasas Intravenosas/efectos adversos , Aceite de Soja , Estudios Retrospectivos , Staphylococcus aureus , Nutrición Parenteral/efectos adversos
20.
J Neurol Neurosurg Psychiatry ; 93(12): 1289-1298, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36150844

RESUMEN

BACKGROUND: Abnormal expanded GGC repeats within the NOTCH2HLC gene has been confirmed as the genetic mechanism for most Asian patients with neuronal intranuclear inclusion disease (NIID). This cross-sectional observational study aimed to characterise the clinical features of NOTCH2NLC-related NIID in China. METHODS: Patients with NOTCH2NLC-related NIID underwent an evaluation of clinical symptoms, a neuropsychological assessment, electrophysiological examination, MRI and skin biopsy. RESULTS: In the 247 patients with NOTCH2NLC-related NIID, 149 cases were sporadic, while 98 had a positive family history. The most common manifestations were paroxysmal symptoms (66.8%), autonomic dysfunction (64.0%), movement disorders (50.2%), cognitive impairment (49.4%) and muscle weakness (30.8%). Based on the initial presentation and main symptomology, NIID was divided into four subgroups: dementia dominant (n=94), movement disorder dominant (n=63), paroxysmal symptom dominant (n=61) and muscle weakness dominant (n=29). Clinical (42.7%) and subclinical (49.1%) peripheral neuropathies were common in all types. Typical diffusion-weighted imaging subcortical lace signs were more frequent in patients with dementia (93.9%) and paroxysmal symptoms types (94.9%) than in those with muscle weakness (50.0%) and movement disorders types (86.4%). GGC repeat sizes were negatively correlated with age of onset (r=-0.196, p<0.05), and in the muscle weakness-dominant type (median 155.00), the number of repeats was much higher than in the other three groups (p<0.05). In NIID pedigrees, significant genetic anticipation was observed (p<0.05) without repeat instability (p=0.454) during transmission. CONCLUSIONS: NIID is not rare; however, it is usually misdiagnosed as other diseases. Our results help to extend the known clinical spectrum of NOTCH2NLC-related NIID.


Asunto(s)
Demencia , Trastornos del Movimiento , Enfermedades del Sistema Nervioso Periférico , Humanos , Debilidad Muscular/patología , Enfermedades del Sistema Nervioso Periférico/patología , Estudios Transversales , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/patología , Demencia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA