Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Ethnopharmacol ; 323: 117647, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38163558

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huang-Qi-Ge-Gen decoction (HGD) is a traditional Chinese medicine prescription that has been used for centuries to treat "Xiaoke" (the name of diabetes mellitus in ancient China). However, the ameliorating effects of HGD on diabetic liver injury (DLI) and its mechanisms are not yet fully understood. AIM OF THE STUDY: To elucidate the ameliorative effect of HGD on DLI and explore its material basis and potential hepatoprotective mechanism. MATERIALS AND METHODS: A diabetic mice model was induced by feeding a high-fat diet and injecting intraperitoneally with streptozotocin (40 mg kg-1) for five days. After the animals were in confirmed diabetic condition, they were given HGD (3 or 12 g kg-1, i. g.) for 14 weeks. The effectiveness of HGD in treating DLI mice was evaluated by monitoring blood glucose and blood lipid levels, liver function, and pathological conditions. Furthermore, UPLC-MS/MS was used to identify the chemical component profile in HGD and absorption components in HGD-treated plasma. Network pharmacology and molecular docking were performed to predict the potential pathway of HGD intervention in DLI. Then, the results of network pharmacology were validated by examining biochemical parameters and using western blotting. Lastly, urine metabolites were analyzed by metabolomics strategy to explore the effect of HGD on the metabolic profile of DLI mice. RESULTS: HGD exerted therapeutic potential against the disorders of glucose metabolism and lipid metabolism, liver dysfunction, liver steatosis, and fibrosis in a DLI model mice induced by HFD/STZ. A total of 108 chemical components in HGD and 18 absorption components in HGD-treated plasma were preliminarily identified. Network pharmacology and molecular docking results of the absorbed components in plasma indicated PI3K/AKT as a potential pathway for HGD to intervene in DLI mice. Further experiments verified that HGD markedly reduced liver oxidative stress in DLI mice by modulating the PI3K/AKT/Nrf2 signaling pathway. Moreover, 19 differential metabolites between normal and DLI mice were detected in urine, and seven metabolites could be significantly modulated back by HGD. CONCLUSIONS: HGD could ameliorate diabetic liver injury by modulating the PI3K/AKT/Nrf2 signaling pathway and urinary metabolic profile.


Asunto(s)
Diabetes Mellitus Experimental , Medicamentos Herbarios Chinos , Animales , Ratones , Factor 2 Relacionado con NF-E2 , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Cromatografía Liquida , Diabetes Mellitus Experimental/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Hígado , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
2.
J Ethnopharmacol ; 302(Pt A): 115860, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36341813

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng is one of the most widely used herbs in the world for the treatment of various diseases, and ginsenoside is the representative bioactive component in ginseng. There have been many in vivo studies on ginsenoside for the treatment of diabetic nephropathy (DN), the most common diabetic microvascular complication and the main cause of diabetic morbidity and mortality. AIM OF THE STUDY: The purpose of this study is to evaluate the efficacy of ginsenosides on DN by preclinical evidence and meta-analysis. Meanwhile, the main possible action mechanisms of ginsenosides against DN were also summarized. MATERIALS AND METHODS: We systematically searched PubMed, WOS, Embase, Cochrane, WanFang, Cqvip, CNKI and CBM databases from January 1, 2000, to November 15, 2021, to evaluate the animal experiments of ginsenosides for the treatment of DN. Finally, 30 animal experiments were included. Twelve outcome measures, including renal function indicators (24-h urine protein, serum creatinine, urea nitrogen, creatinine clearance, uric acid, urinary albumin to creatinine ratio), oxidative stress biomarkers (GPX, MDA, SOD), inflammatory factors (IL-1, IL-6, TNF-α) were obtained by using RevMan 5.4 software for meta-analysis. RESULTS: The results showed that except for no significant difference in CCr, other indicators such as 24h UP, SCr, blood urea nitrogen, uric acid and UACR were significantly decreased. It showed that ginsenoside could improve renal function in diabetes. Meanwhile ginsenoside significantly up-regulated antioxidant enzymes SOD and GPX, down-regulated MDA and inflammatory factors IL-1, IL-6 and TNF-α, indicating that ginsenoside may have antioxidant and anti-inflammatory effects. CONCLUSION: Ginsenoside can protect against the renal failure in diabetes through anti-inflammation, anti-oxidation, anti-renal fibrosis, anti-apoptosis/pyroptosis, regulation of blood glucose/lipid metabolism, etc. Which provides preclinical evidence for the application of ginsenoside in the treatment of DN.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Nefropatías Diabéticas , Ginsenósidos , Panax , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Creatinina , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Interleucina-1 , Interleucina-6 , Superóxido Dismutasa , Factor de Necrosis Tumoral alfa , Ácido Úrico
3.
J Pharm Biomed Anal ; 169: 127-132, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30861404

RESUMEN

The isolated perfused rat lung (IPL), coupled with high performance liquid chromatography\tandem mass spectrometry analysis (HPLC-ESI-MSn), has been developed as a tool for screening bioactive components in Glycyrrhiza uralensis Fisch. (GU). First, IPL was perfused with the water extract of GU (EGU), the bioactive components in the EGU would selectively combine to the receptors or channels of lung. By changing the pH of perfused solution, the combined components were eluated and then detected by HPLC-ESI-MSn. Four compounds were detected in the desorption eluate of IPL, among these compounds, liquiritin (1), ononin (2) and glycyrrhizic acid (4) were identified by comparing with the chromatography of the standards, while licorice-saponin G2 (3) were determined by analysis of the structure clearage characterization of mass spectrometry. Then, due to the lack of compound 3 sample, compounds 1, 2 and 4 with respective concentrations of 50 µM, 5 µM, 500 nM, 50 nM and 5 nM were applied to evaluate the protective effect of pulmonary epithelial cells (PEC, A549 cell) injury induced by lipopolysaccharide (LPS) for anti-inflammatory activity assessment. The results showed that except the 5 nM group of compound 1, 5 nM and 50 nM groups of compound 2, all other groups could remarkably inhibit the PEC injury (vs LPS group, 2-500 nM groups: p < 0.05; other groups: p < 0.01), all compound showed the dose-dependent effect. In conclusion, IPL coupled with HPLC-ESI-MSn was successfully used to screen the anti-inflammatory components of GU for the first time. The application of IPL coupled with HPLC-ESI-MSn for screening bioactive components of TCMs is rapid, convenient and reliable, and the isolated perfused technology could be extended to isolated heart, liver, kidney, and so on.


Asunto(s)
Glycyrrhiza uralensis/química , Pulmón/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Células A549 , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Flavanonas/química , Flavanonas/farmacología , Glucósidos/química , Glucósidos/farmacología , Glycyrrhiza/química , Ácido Glicirrínico/química , Ácido Glicirrínico/farmacología , Humanos , Isoflavonas/química , Isoflavonas/farmacología , Ratas , Ratas Wistar , Saponinas/química , Saponinas/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem/métodos
4.
J Pharm Pharmacol ; 68(1): 93-106, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26806697

RESUMEN

OBJECTIVES: A novel compound 4,4'-diphenylmethane-bis(methyl) carbamate (CM1) was shown to possess preventive activity on AGEs-induced human umbilical vein endothelial cells (HUVECs) damage via binding to RAGE. However, the underlying structural basis of CM1 on binding to RAGE was not fully understood. METHODS: In the present study, CM1 analogues were designed and synthesized to compare the activity differences on inhibiting AGEs-induced inflammatory response including TGF-ß1, RAGE protein expression in HUVECs, and macrophages migration and adhesion to HUVECs. In addition, the cell viability and anti-apoptosis activities of CM1 analogues were also examined. KEY FINDINGS: These results indicated that CM1 had higher activities on preventing AGEs-induced HUVECs damage (inflammation, cell viability and apoptosis) than other analogues. The bioaffinity assay was conducted by CMC and demonstrated that the IC50 and dissociation equilibrium constants (Kd) of CM1 were lower whereas the Bmax was higher than other analogues. The incubation of RAGE protein with CM1 analogues by equilibrium dialysis method showed CM1 had a stronger binding rate than other CM1 analogues. CONCLUSION: Our findings suggested that the C-terminal tails (methoxycarbonyl groups) of CM1 were the active groups for binding to RAGE and then led to the attenuation on RAGE-mediated endothelial dysfunction.


Asunto(s)
Apoptosis/efectos de los fármacos , Carbamatos/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
5.
J Nat Med ; 68(1): 163-72, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23797737

RESUMEN

Endothelial cell (EC) apoptosis plays a pivotal role in the progression of diabetic complications. Abundant studies have demonstrated the pivotal role of advanced glycation end products (AGEs) on the development of diabetes. The aim of the present study was to investigate the effect of calycosin, a phytoestrogen, on AGEs-induced human umbilical vein endothelial cell (HUVEC) apoptosis. Fluorescence polarization and fluorescence absorption assays indicated that calycosin interacted with AGEs in a time-dependent manner. Further studies found that calycosin entered the cells as detected by HPLC. The MTT method demonstrated that calycosin ameliorated AGEs-induced HUVEC apoptosis in a dose-dependent manner, and statistical significance was observed at 1 × 10(-8) M of calycosin; this behavior was further demonstrated by acridine orange/ethidium bromide staining in that the presence of calycosin dramatically reduced AGEs-induced red staining in HUVECs. Further studies found that pre-incubation with calycosin at 1 × 10(-8) M dramatically increased anti-apoptotic Bcl-2 while decreased pro-apoptotic Bax and Bad expressions as detected by immunocytochemistry, and the effect of calycosin on rebalancing the ratio of Bcl-2/Bax was more significant than that of its glycoside, calycosin-7-O-ß-D-glucopyranoside (CG). Furthermore, calycosin slightly reversed AGEs-induced cell oxidative stress at 1 × 10(-8) M, but its antioxidative stress effect was less significant than that of CG. The present study strongly indicates that calycosin can enter the cell and modulate endothelial cell dysfunction by ameliorating AGEs-induced cell apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Productos Finales de Glicación Avanzada/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Isoflavonas/farmacología , Fitoestrógenos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antioxidantes/farmacología , Transporte Biológico , Células Cultivadas , Relación Dosis-Respuesta a Droga , Glucósidos/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Isoflavonas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fitoestrógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Proteína X Asociada a bcl-2/metabolismo , Proteína Letal Asociada a bcl/metabolismo
6.
J Pharm Biomed Anal ; 77: 44-8, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23384550

RESUMEN

A cell-permeable membrane, as typified by Transwell insert Permeable Supports, permit accurate repeatable invasion assays, has been developed as a tool for screening immunological active components in Smilacis Glabrae Rhizoma (SGR). In this research, components in the water extract of SGR (ESGR) might conjugate with the receptors or other targets on macrophages which invaded Transwell inserts, and then the eluate which contained components biospecific binding to macrophages was identified by HPLC-ESI-MS(n) analysis. Six compounds, which could interact with macrophages, were detected and identified. Among these compounds, taxifolin (2) and astilbin (4) were identified by comparing with the chromatography of standards, while the four others including 5-O-caffeoylshikimic acid (1), neoastilbin (3), neoisoastilbin (5) and isoastilbin (6), were elucidated by their structure clearage characterizations of tandem mass spectrometry. Then compound 1 was isolated and purified from SGR, along with 2 and 4, was applied to the macrophage migration and adhesion assay in HUVEC (Human Umbilical Vein Endothelial Cells) -macrophages co-incultured Transwell system for immunological activity assessment. The results showed that compounds 1, 2 and 4 with concentration of 5µM (H), 500nM (M) and 50nM (L) could remarkably inhibit the macrophage migration and adhesion (Vs AGEs (Advanced Glycation End Produces) group, 1-L, 2-H and 4-L groups: p<0.05; other groups: p<0.01). Moreover, 1 and 4 showed satisfactory dose-effect relationship. In conclusion, the application of macrophage biospecific extraction coupled with HPLC-ESI-MS(n) analysis is a rapid, simple and reliable method for screening immunological active components from Traditional Chinese Medicine.


Asunto(s)
Factores Biológicos/química , Cromatografía Líquida de Alta Presión/métodos , Macrófagos/química , Rizoma/química , Smilax/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Factores Biológicos/farmacología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Flavonoides/química , Flavonoles/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Medicina Tradicional China , Quercetina/análogos & derivados , Quercetina/química , Ácido Shikímico/análogos & derivados , Ácido Shikímico/química , Agua/química
7.
Planta Med ; 78(16): 1757-60, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22923199

RESUMEN

Curcuma longa L. (CLL), a traditional herbal medicine, has been widely used for the prevention of diabetic vascular complications in recent years. However, the protective effects of curcuminoids in CLL on the AGEs-induced damage to mesangial cell are not fully understood. In this present study, dihydroethidium, superoxide dismutase kit, malondialdehyde kit, and acridine orange/ethidium bromide staining methods were used to evaluate the activities of curcumin and demethoxycurcumin (10(-11)-10(-9) M) on AGEs-induced oxidative stress and apoptosis, which were associated with the damage to mesangial cell. The results showed that these two compounds could significantly restore advanced glycation end products (AGEs)-induced apoptosis to normal levels (IC50 = 3.874 × 10(-11) M for curcumin and IC50 = 6.085 × 10(-11) M for demethoxycurcumin) and reduce remarkably reactive oxygen species generation in mesangial cell. Furthermore, curcumin and demethoxycurcumin dramatically elevated AGEs-decreased superoxide dismutase activity while significantly reducing AGEs-increased malondialdehyde content in cell culture supernatant. Our results suggest that both curcumin and demethoxycurcumin have a significant protective potential to the prevention of diabetic nephropathy.


Asunto(s)
Curcuma/química , Curcumina/análogos & derivados , Curcumina/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Células Mesangiales/efectos de los fármacos , Estrés Oxidativo , Animales , Apoptosis , Línea Celular , Curcumina/química , Diarilheptanoides , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/farmacología , Concentración 50 Inhibidora , Malondialdehído/metabolismo , Extractos Vegetales/química , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Juego de Reactivos para Diagnóstico , Rizoma/química , Superóxido Dismutasa/metabolismo
8.
Phytother Res ; 26(3): 412-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21796706

RESUMEN

Advanced glycation end-products (AGEs) have been regarded as an initial motivating factor in the pathogenesis of endothelial dysfunction in diabetic complications. 4,4'-Diphenylmethane-bis(methyl) carbamate (DMPC), a carbamate compound, was isolated from Cortex Mori and its prevention effects against AGEs-induced endothelial dysfunction were studied. 4,4'-Diphenylmethane-bis(methyl) carbamate significantly reduced cell apoptosis to normal level at 10⁻9 mol/L concentration. Advanced glycation end-products up-regulated the expression of Bad and Bax and down-regulated Bcl-2 proteins, and pretreatment with DMPC significantly down-regulated Bad and Bax while up-regulating Bcl-2 expressions. In addition, ICAM (intercellular adhesion molecule)-1 and TGF (transforming growth factor)-ß1 expressions in human umbilical vein endothelial cell (HUVEC) were significantly enhanced by AGEs. More importantly, these increases of ICAM-1 and TGF-ß1 expressions were reduced meaningfully with the pretreatment of DMPC. All the results showed DMPC had prevention effects against the progression of AGE-induced endothelial dysfunction, and this compound might be a promising agent against endothelial dysfunction in diabetic vascular complications.


Asunto(s)
Carbamatos/farmacología , Productos Finales de Glicación Avanzada/efectos adversos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Morus/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Carbamatos/química , Carbamatos/aislamiento & purificación , Supervivencia Celular , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inmunohistoquímica , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Raíces de Plantas/química , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína Letal Asociada a bcl/genética , Proteína Letal Asociada a bcl/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA