Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
iScience ; 27(5): 109741, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706871

RESUMEN

Pancreatic cancer (PC) is a lethal disease and associated with metabolism dysregulation. Nogo-B is related to multiple metabolic related diseases and types of cancers. However, the role of Nogo-B in PC remains unknown. In vitro, we showed that cell viability and migration was largely reduced in Nogo-B knockout or knockdown cells, while enhanced by Nogo-B overexpression. Consistently, orthotopic tumor and metastasis was reduced in global Nogo knockout mice. Furthermore, we indicated that glucose enhanced cell proliferation was associated to the elevation expression of Nogo-B and nuclear factor κB (NF-κB). While, NF-κB, glucose transporter type 1 (GLUT1) and sterol regulatory element-binding protein 1 (SREBP1) expression was reduced in Nogo-B deficiency cells. In addition, we showed that GLUT1 and SREBP1 was downstream target of NF-κB. Therefore, we demonstrated that Nogo deficiency inhibited PC progression is regulated by the NF-κB/GLUT1 and SREBP1 pathways, and suggested that Nogo-B may be a target for PC therapy.

2.
Cancer Biomark ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38517779

RESUMEN

INTRODUCTION: GINS2 exerts a carcinogenic effect in multiple human malignancies, while it is still unclear that the potential roles and underlying mechanisms of GINS2 in HNSCC. METHODS: TCGA database was used to screen out genes with significant differences in expression in HNSCC. Immunohistochemistry and qRT-PCR were used to measure the expression of GINS2 in HNSCC tissues and cells. GINS2 was detected by qRT-PCR or western blot after knockdown or overexpression. Celigo cell counting, MTT, colony formation, and flow cytometric assay were used to check the ability of proliferation and apoptosis. Bioinformatics and microarray were used to screen out the downstream genes of GINS2. RESULTS: GINS2 in HNSCC tissues and cells was up-regulated, which was correlated with poor prognosis. GINS2 gene expression was successfully inhibited and overexpressed in HNSCC cells. Knockdown of GINS2 could inhibit proliferation and increase apoptosis of cells. Meanwhile, overexpression of GINS2 could enhance cell proliferation and colony formation. Knockdown of RRM2 may inhibit HNSCC cell proliferation, while overexpression of RRM2 rescued the effect of reducing GINS2 expression. CONCLUSION: Our study reported the role of GINS2 in HNSCC for the first time. The results demonstrated that in HNSCC cells, GINS2 promoted proliferation and inhibited apoptosis via altering RRM2 expression. Therefore, GINS2 might play a carcinogen in HNSCC, and become a specific promising therapeutic target.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38401080

RESUMEN

Objective: This study aimed to analyze the difference between non-ligation and traditional ligation techniques for papillary thyroid micro-carcinoma (PTMC) patients. Methods: Patients undergoing thyroidectomy in the Department of General Surgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University, Lu Wan Branch, were retrospectively enrolled. The gender, age, operation method, operation duration, tumor size, size of thyroidectomy specimen, postoperative bleeding, drainage volume on the first postoperative day, preoperative and postoperative levels of parathyroid hormone (PTH), and blood calcium were collected. Results: Compared with the traditional ligation technique, the non-ligation technique significantly shortened the operation time (69.36 ± 1.38 vs. 82.72 ± 2.12, P < .0001) and reached less variation of the serum calcium (2.32 ± 0.01 vs 2.28 ± 0.01, P < .001) and PTH (26.58 ± 0.08 vs 22.01 ± 1.04, P < .05) on the first postoperative day, and the above biochemical indicators returned to normal 3 weeks after surgery. The PTH in the No-ligation technique group was 7.20± 1.99, which was significantly lower than that in the Traditional ligation group (20.78± 3.78) (P < .01). Conclusion: No-ligation technique can significantly reduce the operation time in thyroidectomy but may temporarily affect the levels of parathyroid hormone and blood calcium, and the above changes returned to normal 3 weeks after surgery. These results highlighted that No-ligation technique can benefit patients and will be a favorable treatment method.

4.
Cell Biol Toxicol ; 40(1): 10, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319449

RESUMEN

Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.


Asunto(s)
Antígenos CD36 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ácidos Grasos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt , Antígenos CD36/genética
5.
Redox Biol ; 69: 103017, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176315

RESUMEN

Flavonoids are bioactive natural polyphenolic compounds with health benefits, including anti-tumor, anti-inflammatory and anti-aging effects. Our previous studies revealed that a flavonoid 4,4'-dimethoxychalcone (DMC) induced ferroptosis via inhibiting ferrochelatase (FECH). However, the effect of DMC on cellular senescence is unknown. In the present study, we found that DMC treatment selectively eliminated senescent cells, and DMC alone or a combination of DMC and quercetin or dasatinib showed high efficiency in the clearance of senescent cells. We identified FECH was highly expressed in senescent cells compared to non-senescent cells. Mechanistically, we found that DMC inhibited FECH and induced ferritinophagy, which led to an increase of labile iron pool, triggering ferroptosis of senescent cells. Importantly, we found that DMC treatment prevented hair loss, improved motor coordination, and reduced the expression of several senescence-associated secretory phenotype factors (IL-6, IL-1ß, CXCL-10, and MMP12) in the liver of old mice. Collectively, we revealed that, through the induction of ferroptosis, DMC holds the promise as a new senolytics to prevent age-related pathologies.


Asunto(s)
Envejecimiento , Flavonoides , Ratones , Animales , Flavonoides/farmacología , Envejecimiento/metabolismo , Senescencia Celular , Quercetina , Dasatinib/farmacología
6.
Endocr Connect ; 13(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37947264

RESUMEN

Objective: The aim was to explore the effects of preoperative calcium and activated vitamin D3 supplementation on post-thyroidectomy hypocalcemia and hypo-parathyroid hormone-emia (hypo-PTHemia). Methods: A total of 209 patients were randomly divided into control group (CG) and experimental group (EG). Oral calcium and activated vitamin D3 supplementation were preoperatively administered to EG, whereas a placebo was administered to CG. Data on serum calcium, phosphorus, and PTH concentrations before operation, on postoperative day 1 (POPD1), at postoperative week 3 (POPW3), and on the length of postoperative hospitalization were collected. Results: The serum calcium, phosphorus, and PTH concentrations, as well as the incidence of postoperative hypocalcemia and hypo-PTHemia, did not significantly differ between EG and CG. Subgroup analysis revealed that the serum calcium concentrations of the experimental bilateral thyroidectomy subgroup (eBTS) on POPD1 and POPW3 were higher than that of the control bilateral thyroidectomy subgroup (cBTS) (P < 0.05); the reduction of serum calcium in eBTS on POPD1 and POPW3 was less than those in cBTS (P < 0.05). However, significant differences were not observed between the unilateral thyroidectomy subgroups (UTS) (P > 0.05). Moreover, the incidence of postoperative hypocalcemia in cBTS on POPD1 was significantly higher than that in eBTS (65.9% vs 41.7%) (P < 0.05). The length of hospitalization in cBTS (3.55 ± 1.89 days) was significantly longer than that (2.79 ± 1.15 days) in eBTS (P < 0.05). Conclusion: Short-term preoperative prophylactic oral calcium and activated vitamin D3 supplementation could effectively reduce the incidence of postoperative hypocalcemia and decrease the length of postoperative hospitalization in patients who have undergone bilateral thyroidectomy.

7.
Front Oncol ; 13: 1240061, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849799

RESUMEN

Background: A significant level of CD70 can be detected in various types of tumor tissues and CD27 is expressed on Treg cells, but CD70 expression is low in normal tissues. The interaction between CD70 and CD27 can stimulate the proliferation and survival of cancer cells and increase the level of soluble CD27, which is associated with poor prognosis in patients with lymphoma and certain solid tumors. Thus, it is a promising therapeutic target for the treatment of many major CD70+ cancer indications, including CD70+ lymphoma, RCC, NSCLC, HNSCC and OC. Methods: IMM40H was obtained through hybridoma screening and antibody humanization techniques. IMM40H was evaluated for its binding, blocking, Fc-dependent effector functions and antitumor activity characteristics in various in vitro and in vivo systems. The safety and tolerability profile of IMM40H were evaluated through single and repeated administration in cynomolgus monkeys. Results: In vitro cell-based assays demonstrated that IMM40H had considerably stronger CD70-binding affinity than competitor anti-CD70 antibodies, including cusatuzumab, which enabled it to block the interaction of between CD70 and CD27 more effectively. IMM40H also exhibited potent Fc-dependent effector functions (ADCC/CDC/ADCP), and could make a strong immune attack on tumor cells and enhance therapeutic efficacy. Preclinical findings showed that IMM40H had potent antitumor activity in multiple myeloma U266B1 xenograft model, and could eradicate subcutaneously established tumors at a low dose of 0.3 mg/kg. IMM40H (0.3 mg/kg) showed therapeutic effects faster than cusatuzumab (1 mg/kg). A strong synergistic effect between IMM01 (SIRPα-Fc fusion protein) and IMM40H was recorded in Burkitt's lymphoma Raji and renal carcinoma cell A498 tumor models. In cynomolgus monkeys, the highest non-severely toxic dose (HNSTD) for repeat-dose toxicity was up to 30 mg/kg, while the maximum tolerated dose (MTD) for single-dose toxicity was up to 100 mg/kg, confirming that IMM40H had a good safety and tolerability profile. Conclusion: IMM40H is a high-affinity humanized IgG1 specifically targeting the CD70 monoclonal antibody with enhanced Fc-dependent activities. IMM40H has a dual mechanism of action: inducing cytotoxicity against CD70+ tumor cells via various effector functions (ADCC, ADCP and CDC) and obstructs the proliferation and activation of Tregs by inhibiting CD70/CD27 signaling.

8.
J Biomed Inform ; 145: 104479, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37634557

RESUMEN

Biological networks are known to be highly modular, and the dysfunction of network modules may cause diseases. Defining the key modules from the omics data and establishing the classification model is helpful in promoting the research of disease diagnosis and prognosis. However, for applying modules in downstream analysis such as disease states discrimination, most methods only utilize the node information, and ignore the node interactions or topological information, which may lead to false positives and limit the model performance. In this study, we propose an omics data analysis method based on feature linear relationship and graph convolutional network (LCNet). In LCNet, we adopt a way of applying the difference of feature linear relationships during disease development to characterize physiological and pathological changes and construct the differential linear relation network, which is simple and interpretable from the perspective of feature linear relationship. A greedy strategy is developed for searching the highly interactive modules with a strong discrimination ability. To fully utilize the information of the detected modules, the personalized sub-graphs for each sample based on the modules are defined, and the graph convolutional network (GCN) classifiers are trained to predict the sample labels. The experimental results on public datasets show the superiority of LCNet in classification performance. For Breast Cancer metabolic data, the identified metabolites by LCNet involve important pathways. Thus, LCNet can identify the module biomarkers by feature linear relationship and a greedy strategy, and label samples by personalized sub-graphs and GCN. It provides a new manner of utilizing node (molecule) information and topological information in the defined modules for better disease classification.


Asunto(s)
Análisis de Datos , Proyectos de Investigación
9.
Eur J Med Chem ; 258: 115602, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37406380

RESUMEN

Pterostilbene is a demethylated resveratrol derivative with attractive anti-inflammatory, anti-tumor and anti-oxidative stress activities. However, the clinical use of pterostilbene is limited by its poor selectivity and druggability. Heart failure is a leading cause of morbidity and mortality worldwide, which is closely related to enhanced oxidative stress and inflammation. There is an urgent need for new effective therapeutic drugs that can reduce oxidative stress and inflammatory responses. Therefore, we designed and synthesized a series of novel pterostilbene chalcone and dihydropyrazole derivatives with antioxidant and anti-inflammatory activities by the molecular hybridization strategy. The preliminary anti-inflammatory activities and structure-activity relationships of these compounds were evaluated by nitric oxide (NO) inhibitory activity in lipopolysaccharide (LPS)-treated RAW264.7 cells, and compound E1 exhibited the most potent anti-inflammatory activities. Furthermore, pretreatment with compound E1 decreased reactive oxygen species (ROS) generation both in RAW264.7 and H9C2 cells by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as downstream antioxidant enzymes superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase 1 (GPX1). In addition, compound E1 also significantly inhibited LPS or doxorubicin (DOX)-induced inflammation in both RAW264.7 and H9C2 cells through reducing the expression of inflammatory cytokines by inhibiting nuclear factor-κB (NF-κB) signaling pathway. Moreover, we found that compound E1 improved DOX-induced heart failure by inhibiting inflammation and oxidative stress in mouse model, which is mediated by the potential of antioxidant and anti-inflammatory activities. In conclusion, this study demonstrated the novel pterostilbene dihydropyrazole derivative E1 was identified as a promising agent for heart failure treatment.


Asunto(s)
Insuficiencia Cardíaca , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Antioxidantes/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Transducción de Señal , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés Oxidativo , Antiinflamatorios/efectos adversos , Insuficiencia Cardíaca/tratamiento farmacológico , Doxorrubicina/farmacología
10.
J Pharmacol Sci ; 153(1): 46-54, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37524454

RESUMEN

Premature ovarian insufficiency (POI) is a clinical syndrome that declines ovarian function in women. Berberine (BBR) is a compound with anti-inflammatory, antioxidant, and anti-apoptotic activities. However, the role of BBR on POI is still unknown. In this study, we investigated the role of BBR on ovarian function decline by establishing a POI mouse model using cyclophosphamide (CTX) and busulfan (BU). Our results showed that POI was attenuated by BBR, which was evidenced by enhanced body weight and ovarian weight, improved morphology of ovary, increased the number of healthy follicles, decreased the production of atretic follicles and restored serum hormone levels, including estradiol, anti-Müllerian hormone and follicle-stimulating hormone. In addition, we showed that germ cell function markers, mouse vasa homologue (MVH) and octamer-binding transcription factor 4 (OCT4) were enhanced by BBR, at both protein and mRNA levels. Furthermore, our results revealed that BBR inhibited inflammation and oxidative stress by reducing nuclear factor kappa B (NF-κB) and enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Taken together, we demonstrate that BBR can effectively improve ovarian function in POI mice, which is mainly mediated by reducing oxidative stress and inflammatory response. Our study also provides new strategy for POI treatment.


Asunto(s)
Berberina , Insuficiencia Ovárica Primaria , Ratones , Femenino , Humanos , Animales , Busulfano/efectos adversos , Berberina/farmacología , Berberina/uso terapéutico , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/prevención & control , Insuficiencia Ovárica Primaria/metabolismo , Ciclofosfamida/toxicidad , Estradiol
11.
Polymers (Basel) ; 15(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242832

RESUMEN

Polypropylene film is the most important organic dielectric in capacitor technology; however, applications such as power electronic devices require more miniaturized capacitors and thinner dielectric films. The commercial biaxially oriented polypropylene film is losing the advantage of its high breakdown strength as it becomes thinner. This work carefully studies the breakdown strength of the film between 1 and 5 microns. The breakdown strength drops rapidly and hardly ensures that the capacitor reaches a volumetric energy density of 2 J/cm3. Differential scanning calorimetry, X-ray, and SEM analyses showed that this phenomenon has nothing to do with the crystallographic orientation and crystallinity of the film but is closely related to the non-uniform fibers and many voids produced by overstretching the film. Measures must be taken to avoid their premature breakdown due to high local electric fields. An improvement below 5 microns will maintain a high energy density and the important application of polypropylene films in capacitors. Without destroying the physical properties of commercial films, this work employs the ALD oxide coating scheme to augment the dielectric strength of a BOPP in the thickness range below 5 µm, especially its high temperature performance. Therefore, the problem of the reduction in dielectric strength and energy density caused by BOPP thinning can be alleviated.

12.
Acta Pharmacol Sin ; 44(10): 2065-2074, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37225845

RESUMEN

Diabetes-related vascular complications include diabetic cardiovascular diseases (CVD), diabetic nephropathy (DN) and diabetic retinopathy, etc. DN can promote the process of end-stage renal disease. On the other hand, atherosclerosis accelerates kidney damage. It is really an urge to explore the mechanisms of diabetes-exacerbated atherosclerosis as well as new agents for treatment of diabetes-exacerbated atherosclerosis and the complications. In this study we investigated the therapeutic effects of fisetin, a natural flavonoid from fruits and vegetables, on kidney injury caused by streptozotocin (STZ)-induced diabetic atherosclerosis in low density lipoprotein receptor deficient (LDLR-/-) mice. Diabetes was induced in LDLR-/- mice by injecting STZ, and the mice were fed high-fat diet (HFD) containing fisetin for 12 weeks. We found that fisetin treatment effectively attenuated diabetes-exacerbated atherosclerosis. Furthermore, we showed that fisetin treatment significantly ameliorated atherosclerosis-enhanced diabetic kidney injury, evidenced by regulating uric acid, urea and creatinine levels in urine and serum, and ameliorating morphological damages and fibrosis in the kidney. In addition, we found that the improvement of glomerular function by fisetin was mediated by reducing the production of reactive oxygen species (ROS), advanced glycosylation end products (AGEs) and inflammatory cytokines. Furthermore, fisetin treatment reduced accumulation of extracellular matrix (ECM) in the kidney by inhibiting the expression of vascular endothelial growth factor A (VEGFA), fibronectin and collagens, while enhancing matrix metalloproteinases 2 (MMP2) and MMP9, which was mainly mediated by inactivating transforming growth factor ß (TGFß)/SMAD family member 2/3 (Smad2/3) pathways. In both in vivo and in vitro experiments, we demonstrated that the therapeutic effects of fisetin on kidney fibrosis resulted from inhibiting CD36 expression. In conclusion, our results suggest that fisetin is a promising natural agent for the treatment of renal injury caused by diabetes and atherosclerosis. We reveal that fisetin is an inhibitor of CD36 for reducing the progression of kidney fibrosis, and fisetin-regulated CD36 may be a therapeutic target for the treatment of renal fibrosis.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Fibrosis/tratamiento farmacológico , Riñón/patología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antígenos CD36/efectos de los fármacos
13.
Comput Biol Med ; 152: 106382, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493730

RESUMEN

MicroRNAs (miRNAs) play an important role in the biological process. Their expression and functional changes have been observed in most cancers. Meanwhile, there exists cooperative regulation among miRNAs which is important for studying the mechanisms of complex post-transcriptional regulations. Hence, studying miRNA synergy and identifying miRNA synergistic modules can help understand the development and progression of complex diseases, such as cancers. This work studies miRNA synergy and proposes a new method for defining disease-related modules (DDRM) by combining the knowledge databases and miRNA data. DDRM measures the miRNA synergy not only by the co-regulating target subset but also by the non-common target set to construct the weighted miRNA synergistic network (WMSN). The experiments on twelve the cancer genome atlas (TCGA) datasets showed that the important modules identified by DDRM can well distinguish the cancer samples from the normal samples, and DDRM performed better than the previous method in most cases. An external dataset of prostate cancer was applied to validate the module biomarkers determined by DDRM on the prostate cancer data of TCGA. The area under the receiver operating characteristic curve (AUC) value is 0.92 and the performance is superior. Hence, combining the miRNA synergy networks from the knowledge databases and the miRNA data can determine the important functional modules related to diseases, which is of great significance to the study of disease mechanism.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias de la Próstata/genética , Regulación Neoplásica de la Expresión Génica
14.
ACS Chem Biol ; 17(12): 3389-3406, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36446024

RESUMEN

Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation and has been implicated in multiple pathological conditions. Glutathione peroxidase 4 (GPX4) plays an essential role in inhibiting ferroptosis by eliminating lipid peroxide using glutathione (GSH) as a reductant. In this study, we found Ellman's reagent DTNB and a series of disulfide compounds, including disulfiram (DSF), an FDA-approved drug, which protect cells from erastin-induced ferroptosis. Mechanistically, DTNB or DSF is conjugated to multiple cysteine residues in GPX4 and disrupts GPX4 interaction with HSC70, an adaptor protein for chaperone mediated autophagy, thus preventing GPX4 degradation induced by erastin. In addition, DSF ameliorates concanavalin A induced acute liver injury by suppressing ferroptosis in a mouse model. Our work reveals a novel regulatory mechanism for GPX4 protein stability control. We also discover disulfide compounds as a new class of ferroptosis inhibitors and suggest therapeutic repurposing of DSF in treating ferroptosis-related diseases.


Asunto(s)
Disulfuros , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Animales , Ratones , Disulfuros/farmacología , Ácido Ditionitrobenzoico , Ferroptosis/efectos de los fármacos , Glutatión/metabolismo , Peroxidación de Lípido/fisiología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Sulfuros , Disulfiram/farmacología
15.
Bioorg Chem ; 129: 106206, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36288667

RESUMEN

Heart failure is one of the diseases with the highest mortality in the world, and inflammation is the main cause for its occurrence and development. The stilbene skeleton of resveratrol has been shown to have excellent anti-inflammatory and antioxidant activities. In order to continue our research on dihydropyrazole derivatives, a series of novel (E)-4-methyl-2-(3-phenyl-5-(4-styrylphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole derivatives were designed and synthesized according to the principle of molecular hybridization for evaluation their anti-inflammatory and antioxidation activities. We screened their anti-inflammatory abilities in RAW264.7 cells and analyzed the preliminary structure-activity relationship, and explored the related molecular mechanisms. We further used doxorubicin (DOX)-induced heart failure model to explore the protective role of our compound in vivo. Our results showed that compound F5 exhibited the most potent activity and was superior to the positive control. It reversed the expression of lipopolysaccharide (LPS)-regulated inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and superoxide dismutase 1 (SOD1) in RAW264.7 cells. In addition, compound F5 also inhibited DOX-induced inflammation and reactive oxygen species by modulating the p38/nuclear factor kappa B (NF-κB) signaling pathway in H9C2 cells. In vivo results showed that compound F5 ameliorated DOX-caused damage, such as reduced left ventricular ejection fraction, severe inflammation, fibrosis and oxidative stress in heart. In conclusion, compound F5 could be used as a promising agent for the treatment of heart failure through attenuating oxidative stress and inflammation.


Asunto(s)
Insuficiencia Cardíaca , Estilbenos , Ratones , Animales , FN-kappa B/metabolismo , Estilbenos/farmacología , Estilbenos/uso terapéutico , Volumen Sistólico , Óxido Nítrico/metabolismo , Función Ventricular Izquierda , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal , Antiinflamatorios/efectos adversos , Lipopolisacáridos/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Factor de Necrosis Tumoral alfa/metabolismo , Células RAW 264.7 , Ciclooxigenasa 2/metabolismo , Doxorrubicina/farmacología , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/tratamiento farmacológico
16.
ACS Omega ; 7(42): 37509-37519, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36312432

RESUMEN

Nicotinamide N-methyltransferase (NNMT) is a cytosolic methyltransferase, catalyzing N-methylation of nicotinamide (NAM) to form 1-methylnicotinamide (1-MNAM), in which S-adenosyl-l-methionine (SAM) is the methyl donor. It has been well documented that NNMT is elevated in multiple cancers and promotes tumor aggressiveness. In the present study, we investigated the effects of NNMT overexpression on cellular metabolism and proinflammatory responses. We found that NNMT overexpression reduced NAD+ and SAM levels, and activated the STAT3 signaling pathway. Consequently, STAT3 activation upregulated interleukin 1ß (IL1ß) and cyclooxygenase-2 (COX2), leading to prostaglandin E2 (PGE2) accumulation. On the other hand, NNMT downregulated 15-hydroxyprostaglandin dehydrogenase (15-PGDH) which catalyzes PGE2 into inactive molecules. Moreover, secretomic data indicated that NNMT promoted secretion of collagens, pro-inflammatory cytokines, and extracellular matrix proteins, confirming NNMT aggravated inflammatory responses to promote cell growth, migration, epithelial-mesenchymal transition (EMT), and chemoresistance. Taken together, we showed that NNMT played a pro-inflammatory role in cancer cells by activating the STAT3/IL1ß/PGE2 axis and proposed that NNMT was a potential therapeutic target for cancer treatment.

17.
Free Radic Biol Med ; 188: 14-23, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35697292

RESUMEN

Flavonoids are widely distributed in plants as secondary metabolites and have various biological benefits such as anti-tumor, anti-oxidant, anti-inflammatory and anti-aging. We previously reported that 4,4'-dimethoxychalcone (DMC) suppressed cancer cell proliferation by aggravating oxidative stress and inducing G2/M cell cycle arrest. In the present study, we explored the underlying mechanisms by which DMC inhibited cancer cell growth. Given that ferrochelatase (FECH) is a potential target of DMC identified by thermal proteome profiling (TPP) method, herein, we confirmed that DMC inhibited the enzymatic activity of FECH. Furthermore, we proved that DMC induced Keap1 degradation via ubiquitin-proteasome system, which led to the nuclear translocation of Nrf2 and upregulated Nrf2 targeted gene HMOX1. FECH inhibition and HMOX1 upregulation resulted in iron overload and triggered ferroptosis in cancer cells. Collectively, we revealed that DMC induced ferroptosis by synergistically activating Keap1/Nrf2/HMOX1 pathway and inhibiting FECH. Our findings indicate that FECH contributes to the non-canonical ferroptosis induction, shed light on the mechanisms of DMC inhibiting cancer cell growth, and set an example for studying biological functions of flavonoids.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Antioxidantes/farmacología , Ferroquelatasa/metabolismo , Flavonoides/farmacología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
18.
Cell Death Dis ; 13(3): 267, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338115

RESUMEN

Nicotinamide N-methyltransferase (NNMT) is an intracellular methyltransferase, catalyzing the N-methylation of nicotinamide (NAM) to form 1-methylnicotinamide (1-MNAM), in which S-adenosyl-L-methionine (SAM) is the methyl donor. High expression of NNMT can alter cellular NAM and SAM levels, which in turn, affects nicotinamide adenine dinucleotide (NAD+)-dependent redox reactions and signaling pathways, and remodels cellular epigenetic states. Studies have revealed that NNMT plays critical roles in the occurrence and development of various cancers, and analysis of NNMT expression levels in different cancers from The Cancer Genome Atlas (TCGA) dataset indicated that NNMT might be a potential biomarker and therapeutic target for tumor diagnosis and treatment. This review provides a comprehensive understanding of recent advances on NNMT functions in different tumors and deciphers the complex roles of NNMT in cancer progression.


Asunto(s)
Neoplasias , Nicotinamida N-Metiltransferasa , Humanos , Neoplasias/genética , Niacinamida , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo
19.
Sci Adv ; 8(4): eabl5220, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35080973

RESUMEN

DNA methyltransferases (DNMTs) catalyze DNA methylation, and their functions in mammalian embryonic development and diseases including cancer have been extensively studied. However, regulation of DNMTs remains under study. Here, we show that CCAAT/enhancer binding protein α (CEBPA) interacts with the long splice isoform DNMT3A, but not the short isoform DNMT3A2. CEBPA, by interacting with DNMT3A N-terminus, blocks DNMT3A from accessing DNA substrate and thereby inhibits its activity. Recurrent tumor-associated CEBPA mutations, such as preleukemic CEBPAN321D mutation, which is particularly potent in causing AML with high mortality, disrupt DNMT3A association and cause aberrant DNA methylation, notably hypermethylation of PRC2 target genes. Consequently, leukemia cells with the CEBPAN321D mutation are hypersensitive to hypomethylation agents. Our results provide insights into the functional difference between DNMT3A isoforms and the regulation of de novo DNA methylation at specific loci in the genome. Our study also suggests a therapeutic strategy for the treatment of CEBPA-mutated leukemia with DNA-hypomethylating agents.

20.
ACS Appl Mater Interfaces ; 12(12): 13634-13643, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32129072

RESUMEN

As an essential DNA repair enzyme, apurinic/apyrimidinic endonuclease 1 (APE1) is overexpressed in most human cancers and is identified as a cancer diagnostic and predictive biomarker for cancer risk assessment, diagnosis, prognosis, and prediction of treatment efficacy. Despite its importance in cancer, however, it is still a significant challenge nowadays to sense abundance variation and monitor enzymatic activity of this biomarker in living cells. Here, we report our construction of biocompatible functional nanocomposites, which are a combination of meticulously designed unimolecular DNA and fine-sized graphene quantum dots. Upon utilization of these nanocomposites as diagnostic probes, massive accumulation of fluorescence signal in living cells can be triggered by merely a small amount of cellular APE1 through repeated cycles of enzymatic catalysis. Most critically, our delicate structural designs assure that these graphene quantum dot-based nanocomposites are capable of sensing cancer biomarker APE1 in identical type of cells under different cell conditions and can be applied to multiple cancerous cells in a highly sensitive and specific manners. This work not only brings about new methods for cytology-based cancer screening but also lays down a general principle for fabricating diagnostic probes that target other endogenous biomarkers in living cells.


Asunto(s)
Neoplasias de la Mama/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Grafito/química , Neoplasias Pancreáticas/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Dispersión Dinámica de Luz , Femenino , Grafito/farmacología , Humanos , Células MCF-7 , Nanocompuestos/química , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patología , Puntos Cuánticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA