Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Mol Cell Biochem ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38782835

RESUMEN

Thioredoxin reductase (TrxR) is a pivotal regulator of redox homeostasis. It is frequently overexpressed in various cancer cells, including prostate cancer, making it a promising target for the development of anti-cancer drugs. In this study, we screened a series of newly designed complexes of gold(I) phosphine. Specifically, Compound 5 exhibited the highest cytotoxicity against prostate cancer cells and demonstrated stronger antitumor effects than commonly used drugs, such as cisplatin and auranofin. Importantly, our mechanistic study revealed that Compound 5 effectively inhibits the TrxR system in vitro. Additionally, Compound 5 promoted intracellular accumulation of reactive oxygen species (ROS), leading to mitochondrial dysfunction and irreversible apoptosis in prostate cancer cells. Our in vivo xenograft study further demonstrated that Compound 5 has excellent antitumor activity against prostate cancer cells, but does not cause severe side effects. These findings provide a promising lead Compound for the development of novel antitumor agents targeting prostate cancer and offer a valuable tool for investigating biological pathways involving TrxR and ROS modulation.

2.
Ann Rheum Dis ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38777376

RESUMEN

OBJECTIVES: This study aims to evaluate the safety and efficacy of BCMA-CD19 compound chimeric antigen receptor T cells (cCAR) to dual reset the humoral and B cell immune system in patients with systemic lupus erythematosus (SLE) with lupus nephritis (LN). METHODS: This is a single-arm open-label multicentre phase 1 study of BCMA and CD19-directed cCAR in patients suffering from SLE/LN with autoantibodies produced by B cells and plasma/long-lived plasma cells. In this clinical trial, we sequentially assigned biopsy-confirmed (classes III-V) LN patients to receive 3×106 cCAR cells/kg postcessation of all SLE medications and conditioning. The primary endpoint of safety and toxicity was assessed. Complete immune reset was indicated by B cell receptor (BCR) deep sequencing and flow cytometry analysis. Patient 11 (P11) had insufficient lymphocyte counts and was underdosed as compassionate use. RESULTS: P1 and P2 achieved symptom and medication-free remission (MFR) from SLE and complete remission from lymphoma. P3-P13 (excluding P11) received an initial dose of 3×106 cCAR cells /kg and were negative for all autoantibodies, including those derived from long-lived plasma cells, 3 months post-cCAR and the complement returned to normal levels. These patients achieved symptom and MFR with post-cCAR follow-up to 46 months. Complete recovery of B cells was seen in 2-6 months post-cCAR. Mean SLE Disease Activity Index 2000 reduced from 10.6 (baseline) to 2.7 (3 months), and renal function significantly improved in 10 LN patients ≤90 days post-cCAR. cCAR T therapy was well tolerant with mild cytokine-release syndrome. CONCLUSIONS: Data suggest that cCAR therapy was safe and effective in inducing MFR and depleting disease-causing autoantibodies in patients with SLE.

3.
Eur Heart J Case Rep ; 8(5): ytae222, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721254

RESUMEN

Background: Pulmonary hypertension has been increasingly reported in association with immunotherapy, but generally lacking invasive haemodynamic confirmation in literature. We present the first case of pulmonary arterial hypertension following nivolumab confirmed with invasive haemodynamic measurements. Case summary: A 65-year-old male with gastro-oesophageal adenocarcinoma developed progressive dyspnoea with exertion, decreasing exercise tolerance after receiving nivolumab for seven months. He was admitted with acute hypoxaemic respiratory failure after syncope at home. The patient was diagnosed with pulmonary arterial hypertension (PAH) with pre-capillary aetiology with right heart catheterization (RHC): mean pulmonary artery pressure 49 mmHg, pulmonary capillary wedge pressure 7 mmHg, and cardiac index 1.3 L/min/m2. Based on serial echocardiograms, the development of PAH appeared to be associated with nivolumab. The patient died of cardiac arrest 3 days after admission. Discussion: Progressive unexplained dyspnoea after receiving programmed cell death protein 1 monoclonal antibody should prompt clinicians to consider PAH and RHC.

4.
Curr Med Chem ; 31(13): 1769-1780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666505

RESUMEN

BACKGROUND: Malignant ascites is one of the severe complications of hepatocellular carcinoma, which can be regarded as a unique tumor microenvironment of hepatocellular carcinoma. The identification of novel biomarkers in malignant ascites could be crucial to differentiate patients with hepatocellular carcinoma and cirrhotic ascites. OBJECTIVE: The study aimed to distinguish the metabolomics of malignant ascites in patients with hepatocellular carcinoma from that of non-malignant ascites (cirrhotic ascites). METHODS: Liquid chromatography-mass spectrometry was performed to analyze the differentially distributed biomarkers in patients with malignant ascites and hepatocellular carcinoma (n = 39), as well as in patients with cirrhotic ascites, which were taken as controls (n = 36). RESULTS: A total of 20 differential metabolites associated with malignant ascites were identified, of which 8 metabolites were upregulated and 12 metabolites were downregulated (ratio < 0.5 or > 1.5, respectively). Moreover, pathway and enrichment analyses revealed nitrogen metabolism, urea cycle, phenylalanine, and tyrosine metabolism to be implicated in the formation of malignant ascites in patients with hepatocellular carcinoma. CONCLUSION: Our results suggest that the key factors associated with pathways, such as arachidonic acid, phenylalanine, and glutamic acid pathways, are potential ascitic fluidbased biomarkers for differentiating hepatocellular carcinoma with cirrhosis ascites; the results also provide a clinical pathophysiological interpretation of biomarkers and metabolic pathways relevant to disease status.


Asunto(s)
Ascitis , Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Metaboloma , Metabolómica , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/diagnóstico , Ascitis/metabolismo , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Masculino , Femenino , Anciano
5.
Aging (Albany NY) ; 16: 5264-5287, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466642

RESUMEN

Hepatocellular carcinoma (HCC) is among the most common deadly tumors but still lacks specific biomarkers for diagnosis, prognosis, and treatment guidance. The COP9 signalosome (COPS) is an essential regulator of the ubiquitin conjugation pathway upregulated in various cancers. We evaluated the contributions of COPS subunits to HCC tumorigenesis and their utility for prognosis. We comprehensively evaluated the tumor expression pattern and tumorigenic functions of COPS subunits using The Cancer Genome Atlas (TCGA), The Human Protein Atlas and immunohistochemistry. Kaplan-Meier, Cox regression, ROC curve, and nomogram analyses were used to assess the predictive values of COPS subunits for clinical outcome. Expression levels of COPS subunits were significantly upregulated in HCC tissues, which predicted shorter overall survival (OS). Further, Cox regression analysis identified COPS5, COPS7B, and COPS9 as independent prognostic biomarkers for OS. High mutation rates were also found in COPS subunits. Functional network analysis indicated that COPS and neighboring genes regulate 'protein neddylation', 'protein deneddylation', and 'protein ubiquitination'. The COPS PPI included strong interactions with p53, CUL1/2/3/4, and JUN. Moreover, the correlations between COPS subunit expression levels and tumor immune cell infiltration rates were examined using TIMER, TISIDB, ssGSEA, and ESTIMATE packages. COPS subunits expression levels were positively correlated with specific tumor immune cell infiltration rates, immunoregulator expression levels, and microsatellite instability in HCC. Finally, knockout of COPS6 and COPS9 in HCC cells reduced while overexpression enhanced proliferation rate and metastasis capacity. Our study revealed that COPS potential biomarker for unfavorable HCC prognosis and indicators of immune infiltration, tumorigenicity, and metastasis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Complejo del Señalosoma COP9/genética , Pronóstico , Neoplasias Hepáticas/genética , Núcleo Celular , Carcinogénesis/genética , Proteínas Adaptadoras Transductoras de Señales
6.
J Mol Neurosci ; 74(1): 19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358571

RESUMEN

The sympathetic nervous system (SNS) is a crucial branch of the autonomic nervous system (ANS) that is responsible for regulating visceral function and various physiological processes. Dysfunction of the SNS can lead to various diseases, such as hypertension and metabolic disorders. However, obtaining sympathetic neurons from human tissues for research is challenging. The current research aimed at recapitulating the process of human sympathetic neuron development and achieved the successful establishment of a stepwise, highly efficient in vitro differentiation protocol. This protocol facilitated the generation of functional and mature sympathetic neurons from human pluripotent stem cells (hPSCs) using a chemical-defined induction medium. Initially, each differentiation stage was refined to derive sympathoadrenal progenitors (SAPs) from hPSCs through neural epithelial cells (NECs) and trunk neural crest stem cells (NCSCs). hPSC-derived SAPs could be expanded in vitro for at least 12 passages while maintaining the expression of SAP-specific transcription factors and neuronal differentiation potency. SAPs readily generated functional sympathetic neurons (SymNs) when cultured in the neuronal maturation medium for 3-4 weeks. These SymNs expressed sympathetic markers, exhibited electrophysiological properties, and secreted sympathetic neurotransmitters. More importantly, we further demonstrated that hPSC-derived SymNs can efficiently regulate the adipogenesis of human adipose-derived stem cells (ADSCs) and lipid metabolism in vitro. In conclusion, our study provided a simple and robust protocol for generating functional sympathetic neurons from hPSCs, which may be an invaluable tool in unraveling the mechanisms of SNS-related diseases.


Asunto(s)
Neuronas , Células Madre Pluripotentes , Humanos , Adipocitos , Diferenciación Celular , Células Epiteliales
7.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338925

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Microglía/metabolismo , Neuronas Dopaminérgicas/metabolismo
8.
Medicine (Baltimore) ; 103(3): e37031, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241544

RESUMEN

The prognostic value of preoperative white blood cell to hemoglobin ratio (WHR) and fibrinogen to albumin ratio (FAR) in colorectal cancer (CRC) is unknown. The purpose of this study was to analyze the correlation between preoperative WHR and FAR and the prognosis of CRC patients. The retrospective study analyzed the medical records of 207 patients with colorectal cancer who were admitted to Linyi People's Hospital between June 1, 2017 and June 1, 2021. The receiver operator curve was used to determine the cutoff value of 4.604 for WHR and 0.086 for FAR, and the patients were divided into high and low groups for comparative analysis of clinical data. Cox proportional hazards regression models were used to assess independent risk factors for disease-free survival (DFS) and overall survival (OS) in univariate and multifactorial analyses. Kaplan-Meier methods were used for survival analysis and logrank tests were used to assess survival differences. Multifactorial Cox analysis showed that tumor pathological stage (HR = 6.224, 95% CI:3.063-12.647, P < .001), and WHR (HR = 3.681, 95% CI:1.768-7.401, P < .001) were the independent risk factors for DFS in CRC patients. Tumor pathological stage (HR = 4.080, 95% CI:1.992-8.360, P < .001), and WHR (HR = 3.397, 95% CI:1.662-6.940, P = .001) were independent risk factors for OS. High levels of WHR and high levels of FAR were associated with lower DFS (P < .001) and OS (P < .001).CRC patients with both higher WHR and FAR had significantly lower DFS (P < .001) and OS (P < .001). DFS and OS may be shorter in CRC patients with high WHR and high FAR, perhaps associated with poor prognosis in CRC patients, and WHR and FAR may be potential CRC prognostic markers.


Asunto(s)
Neoplasias Colorrectales , Leucocitos , Humanos , Pronóstico , Estadificación de Neoplasias , Estudios Retrospectivos , Leucocitos/patología , Fibrinógeno/análisis , Albúminas
9.
J Hazard Mater ; 465: 133148, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056275

RESUMEN

A novel TEA and HCHO dual-function temperature-dependent sensing material (3La-In2O3) with ultra-high sensitivity was developed via a facile electrospinning process. Though rare earth doped in In2O3-based sensors have been widely reported, the low sensitivity, poor selectivity and high operating temperature remain restrict their application. Herein, the In2O3 nanofibers with different contents of La3+ ions are firstly obtained by a facile electrospinning process. The sensing performance investigation confirms that the 3% La/In molar ratio of La3+ doped in In2O3 nanofibers are more appropriate as the sensing material for TEA and HCHO detection. The 3La-In2O3 exhibits greatest response value of 3721.60-10 ppm TEA and 1469.65-10 ppm HCHO at their best working temperature (100 â„ƒ and 160 â„ƒ), approximately 23.85-fold and 10.85-fold higher than that of pristine In2O3 nanofibers. In addition, the excellent selectivity, repeatability, and long-term stability ensure the further application of the 3La-In2O3-based sensor in actual environment. The promoted sensing performance is mainly ascribed to the more oxygen vacancies, the increasing specific surface area, the smaller grain size of In2O3 nanofibers induced by La3+ doping. The DFT results demonstrate the beneficial effect of La and oxygen vacancies on the improved target gas adsorption energy.

10.
Anal Chem ; 95(50): 18603-18610, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38048177

RESUMEN

Terminal deoxynucleotidyl transferase (TdT) is upregulated in several types of leukemia and is considered a disease biomarker and a potential therapeutic target for leukemia. In this research, a homogeneous electrochemiluminescence (ECL) method based on the control of surface charge and morphology of tris (2,2'-bipyridine) ruthenium(II) chloride hexahydrate-doped silica nanoparticles (Ru@SiO2 NPs) has been designed for TdT activity detection. A small amount of short single-stranded DNA (ssDNA) was modified onto the surface of Ru@SiO2 NPs, and the nanoparticles with a slight positive charge experienced electrostatic attraction with the indium tin oxide (ITO) electrode with a negative charge, so relatively high ECL signals had been detected. Under the action of TdT, the ssDNA was significantly elongated, carrying numerous negative charges on its phosphate backbone, so the overall negative charge of the reporter nanoparticles was enhanced, resulting in a strong electrostatic repulsion with the ITO electrode. Simultaneously, the long ssDNA wrapped around the nanoparticles hindered the approach of the coreactant. Due to the dual effects, the ECL response of the system decreased. The constructed biosensor exhibited excellent sensitivity toward TdT over a range spanning from 1 to 100 U/L. The limit of detection is as low as 1.78 U/L. The developed approach was effectively applied to detect TdT activity in leukemic patients' leukocyte extracts.


Asunto(s)
Técnicas Biosensibles , Leucemia , Nanopartículas , Humanos , ADN Nucleotidilexotransferasa , Dióxido de Silicio , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , ADN de Cadena Simple , Técnicas Biosensibles/métodos
11.
Oncol Rep ; 50(6)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37937607

RESUMEN

Krüppel­like factor 4 (KLF4) is a transcription factor which functions as a tumor suppressor or an oncogene in numerous types of solid tumors. However, its expression levels and function in perihilar cholangiocarcinoma (pCCA) have yet to be elucidated. In the present study, in order to investigate its roles in pCCA, reverse transcription­quantitative PCR (RT­qPCR), western blot analysis and immunohistochemistry were used to detect KLF4 expression in pCCA. The Chi­squared test was used to analyze the associations between KLF4 and the clinicopathological features of patients with pCCA. Univariate and multivariate analyses were subsequently used to analyze the prognostic significance of KLF4. The tumor suppression of KLF4 was investigated for the purposes of illustrating its biological function both in vitro and in vivo. Furthermore, the association between KLF4 and growth/differentiation factor 15 (GDF15) was determined using pCCA tissue microarray (TMA) analysis and RT­qPCR. The underlying molecular mechanisms between KLF4 and GDF15 were subsequently investigated in vitro. In pCCA tissues, KLF4 was found to be downregulated, and this was negatively associated with the histological grade and tumor size. The knockdown of KLF4 was also found to be a prognostic indicator of the poorer survival of patients with pCCA. Based on in vitro and in vivo analyses, KLF4 was found to suppress tumor progression and induce cell apoptosis. Furthermore, it was found that KLF4 executed its tumor suppressive effects via the regulation of the GDF15/AKT signaling pathway. Taken together, the findings of the present study demonstrate that KLF4 may be considered as an independent biomarker of a favorable prognosis of patients with pCCA, and the KLF4/GDF15/AKT signaling pathway may potentially be a novel molecular therapeutic target for patients with pCCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Tumor de Klatskin , Humanos , Neoplasias de los Conductos Biliares/metabolismo , Proliferación Celular/genética , Colangiocarcinoma/genética , Factor 15 de Diferenciación de Crecimiento/genética , Tumor de Klatskin/genética , Tumor de Klatskin/cirugía , Factor 4 Similar a Kruppel , Proteínas Proto-Oncogénicas c-akt/metabolismo
12.
Orthop Surg ; 15(11): 2848-2854, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37675759

RESUMEN

OBJECTIVE: Pelvic compensation is common in femoroacetabular impingement (FAI) patients to reduce symptoms and increase range of motion. However, little attention was given to the postoperative clinical effect of pelvic compensation. Therefore, this study aims to compare the outcomes between pelvic compensation and normal pelvic position in femoroacetabular impingement (FAI) patients after hip arthroscopy. METHODS: The retrospective study was conducted from January 2019 to June 2022, recruited consecutive patients who were diagnosed with FAI and received subsequent arthroscopic treatment. All patients completed an X-ray in the anterior-posterior standing position before and 4 weeks after surgery. Patients with pelvic compensation were compared with those who did not. Functional outcomes included hip disability and osteoarthritis outcome score (HOOS), modified Harris (mHHS) score, and lower-extremity activity scale (LEAS). Secondary outcomes included the EuroQol Five Dimensions Questionnaire (EQ-5D) and patient satisfaction. The intraclass correlation coefficient (ICC) was used to analyze interobserver and intraobserver reliability. RESULTS: Ninety patients with a mean age of 39.40 years were included in the study. No significant compensation changes were noted within groups after the elimination of impingement. The functional scores showed no significant difference between groups (p(HOOS) = 0.352, p(mHHS) = 0.183, p(LEAS) = 0.865). The EQ-5D revealed statistically better performance in usual activities in the compensatory group (p = 0.044). There are no significant between-group differences in patients' satisfaction evaluations. CONCLUSION: As assessed by Patient-Reported Outcome Measures (PROMs), patients with compensatory pelvic tilt demonstrated similar clinical outcomes without extra adverse events to patients with normal pelvic positioning in short-term follow-ups. Furthermore, compensatory pelvic tilt did not significantly enhance the range of motion or functional outcome at short-term follow-ups.


Asunto(s)
Pinzamiento Femoroacetabular , Humanos , Adulto , Pinzamiento Femoroacetabular/cirugía , Articulación de la Cadera/cirugía , Estudios Retrospectivos , Reproducibilidad de los Resultados , Resultado del Tratamiento , Medición de Resultados Informados por el Paciente , Artroscopía/métodos
13.
Ann Med ; 55(2): 2242247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37544888

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant solid tumours, and abnormal metabolic reprogramming in the tumour microenvironment is regarded as an important contributor to its pathogenesis. OBJECTIVES: As there is an urgency to identify new targets based on the metabolic features that are highly refractory to PDAC treatment, this study aimed to identify suitable therapeutic targets for PDAC. METHODS: In this study, gene set enrichment and Kyoto Encyclopedia of Genes and Genomes analyses were performed on 163 PDAC tissue samples and 165 normal pancreatic tissue samples from The Cancer Genome Atlas and Genotype-Tissue Expression databases to identify alterations in critical metabolites that may contribute to PDAC pathogenesis. Furthermore, ultra-performance liquid chromatography-tandem mass spectrometry was performed to identify significant metabolic pathways between 24 pairs of tumour and adjacent non-tumour tissues and between serum samples from PDAC patients and healthy donors. RESULTS: Fifty-one tissue metabolites and 26 serum metabolites were altered in PDAC. Among them, those in the γ-glutamyl cycle were the most substantially changed, and 5-oxoproline was the biomarker of PDAC with the most significantly decreased levels. CONCLUSIONS: The γ-glutamyl cycle and 5-oxoproline might be potential biomarkers and therapeutic targets to improve the diagnosis, therapy, and prognosis of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ácido Pirrolidona Carboxílico , Biomarcadores de Tumor , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral , Neoplasias Pancreáticas
14.
Clin Cosmet Investig Dermatol ; 16: 1997-2004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554302

RESUMEN

Background: IgG4-related disease (IgG4-RD) is a rare fibroinflammatory disease that has a high tendency to misdiagnosis in clinics. Case Presentation: A 48-year-old man developed a rash with progressive itching 3 years ago after hormone therapy for an ocular "inflammatory pseudotumor". The disease condition of this patient involved multiple organs which involved the skin. The patient was misdiagnosed with other diseases during the period of hospitalization, leading to poor therapeutic effects and repeated skin lesions. The dermatopathological report indicated plasma cell proliferative disorder, with IgG4/IgG exceeding 40% and abnormally elevated serum IgG4 levels. After the patient was diagnosed with IgG4-RD, a series of treatments improved skin lesions, relieved other symptoms, and decreased serum IgG4 levels. Conclusion: IgG4-RD is a highly misdiagnosed disease that deserves the attention of physicians. The patient we reported could be considered a representative case of IgG4-RD that presents with skin lesions. For patients with suspected IgG4-RD, serum IgG4 testing should be performed, and further imaging, serological tests, and pathology examinations are needed to exclude malignancy, infection, and autoimmune diseases.

15.
Am J Transl Res ; 15(6): 4332-4344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434810

RESUMEN

PURPOSE: To identify and validate the immune-related gene signature in patients with acute myeloid leukemia (AML). METHODS: Differentially expressed genes (DEGs) profiles and survival data were obtained from The Cancer Genome Atlas (TCGA), following screened immune-associated genes from the InnateDB database. Subsequently, the weighted gene co-expression network analysis (WGCNA) was used to detect functional modules, and survival analysis was performed. The least absolute shrinkage and selection operator (LASSO) regression model combined with a partial likelihood-based Cox proportional hazard regression model was applied to select prognostic genes, and the ESTIMATE algorithm was used to construct an immune score-based risk assessment model. Finally, two independent datasets from the Gene Expression Omnibus (GEO) and our clinical data were used for external validation. Moreover, a subpopulation of the immune microenvironment cells was analyzed by the CIBERSORT algorithm, and its related serum indicator was identified by the enzyme-linked immunosorbent assay (ELISA) in clinical samples. RESULTS: Finally, CTSD, GNB2, CDK6, and WAS were identified as the immune-related gene signature, and the risk stratification model was validated in both the GSE12417 database and our clinical cohort. Furthermore, the fraction of activated mast cells was identified. CIBERSORT algorithm showed that these cells have a positive association with prognosis. In addition, mast cell stimulator IL-33 was markedly decreased in AML patients with poor prognoses. CONCLUSION: A novel immune-related gene signature (CTSD, GNB2, CDK6 and WAS) and its associated plasma indicator (mast cells activator, IL-33) were found to have prognostic value in AML patients.

16.
Cell Res ; 33(12): 904-922, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37460805

RESUMEN

Pyroptosis is a type of regulated cell death executed by gasdermin family members. However, how gasdermin-mediated pyroptosis is negatively regulated remains unclear. Here, we demonstrate that mannose, a hexose, inhibits GSDME-mediated pyroptosis by activating AMP-activated protein kinase (AMPK). Mechanistically, mannose metabolism in the hexosamine biosynthetic pathway increases levels of the metabolite N-acetylglucosamine-6-phosphate (GlcNAc-6P), which binds AMPK to facilitate AMPK phosphorylation by LKB1. Activated AMPK then phosphorylates GSDME at Thr6, which leads to blockade of caspase-3-induced GSDME cleavage, thereby repressing pyroptosis. The regulatory role of AMPK-mediated GSDME phosphorylation was further confirmed in AMPK knockout and GSDMET6E or GSDMET6A knock-in mice. In mouse primary cancer models, mannose administration suppressed pyroptosis in small intestine and kidney to alleviate cisplatin- or oxaliplatin-induced tissue toxicity without impairing antitumor effects. The protective effect of mannose was also verified in a small group of patients with gastrointestinal cancer who received normal chemotherapy. Our study reveals a novel mechanism whereby mannose antagonizes GSDME-mediated pyroptosis through GlcNAc-6P-mediated activation of AMPK, and suggests the utility of mannose supplementation in alleviating chemotherapy-induced side effects in clinic applications.


Asunto(s)
Manosa , Piroptosis , Humanos , Animales , Ratones , Manosa/farmacología , Proteínas Quinasas Activadas por AMP , Gasderminas
17.
Anticancer Agents Med Chem ; 23(17): 1944-1957, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497684

RESUMEN

BACKGROUND: Glutaminase (GLS), the key enzyme involved in glutamine metabolism, has been identified as a critical player in tumor growth and progression. The GLS inhibitor CB-839 has entered several clinical trials against a variety of tumors. OBJECTIVE: Our study aimed to investigate the role and underlying mechanism of GLS and its inhibitor CB-839 in nasopharyngeal carcinoma (NPC). METHODS: The expression, downstream genes, and signaling pathways of GLS in NPC were determined by real-time polymerase chain reaction (RT-PCR), PCR array, western blotting (WB), and immunohistochemical staining (IHC), and the phenotype of GLS was confirmed by in vivo experiments of subcutaneous tumor formation in mice and in vitro experiments of functional biology, including Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, transwell migration, and Boyden invasion assay. Finally, it was also verified whether the treatment of NPC cells by GLS inhibitor CB-839 can change various biological functions and protein expression to achieve the purpose of blocking tumor progression. RESULTS: GLS was remarkably overexpressed in NPC cells and tissues, predicting a poor overall survival of NPC patients. GLS promoted cell cycle, proliferation, colony formation, migratory, and invasive capacities by regulating Cyclin D2 (CCND2) via PI3K/AKT/mTOR pathway in NPC in vitro and in vivo. Notably, CB-839 showed an effective anti-NPC tumor effect by blocking the biological functions of the tumor. CONCLUSION: The first innovative proof is that GLS promotes cell proliferation by regulating CCND2 via PI3K/AKT/mTOR pathway in NPC, and GLS inhibitor CB-839 may serve as a new potential therapeutic target for NPC treatment.


Asunto(s)
Glutaminasa , Glutamina , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/farmacología , Glutamina/genética , Glutamina/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
18.
Stem Cell Reports ; 18(6): 1295-1307, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37207650

RESUMEN

Signaling is central in cell fate regulation, and relevant information is encoded in its activity over time (i.e., dynamics). However, simultaneous dynamics quantification of several pathways in single mammalian stem cells has not yet been accomplished. Here we generate mouse embryonic stem cell (ESC) lines simultaneously expressing fluorescent reporters for ERK, AKT, and STAT3 signaling activity, which all control pluripotency. We quantify their single-cell dynamics combinations in response to different self-renewal stimuli and find striking heterogeneity for all pathways, some dependent on cell cycle but not pluripotency states, even in ESC populations currently assumed to be highly homogeneous. Pathways are mostly independently regulated, but some context-dependent correlations exist. These quantifications reveal surprising single-cell heterogeneity in the important cell fate control layer of signaling dynamics combinations and raise fundamental questions about the role of signaling in (stem) cell fate control.


Asunto(s)
Células Madre Embrionarias , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Mamíferos/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
20.
EClinicalMedicine ; 58: 101905, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37007735

RESUMEN

Background: The presence of gross extrathyroidal extension (ETE) in thyroid cancer will affect the prognosis of patients, but imaging examination cannot provide a reliable diagnosis for it. This study was conducted to develop a deep learning (DL) model for localization and evaluation of thyroid cancer nodules in ultrasound images before surgery for the presence of gross ETE. Methods: From January 2016 to December 2021 grayscale ultrasound images of 806 thyroid cancer nodules (4451 images) from 4 medical centers were retrospectively analyzed, including 517 no gross ETE nodules and 289 gross ETE nodules. 283 no gross ETE nodules and 158 gross ETE nodules were randomly selected from the internal dataset to form a training set and validation set (2914 images), and a multitask DL model was constructed for diagnosing gross ETE. In addition, the clinical model and the clinical and DL combined model were constructed. In the internal test set [974 images (139 no gross ETE nodules and 83 gross ETE nodules)] and the external test set [563 images (95 no gross ETE nodules and 48 gross ETE nodules)], the diagnostic performance of DL model was verified based on the pathological results. And then, compared the results with the diagnosis by 2 senior and 2 junior radiologists. Findings: In the internal test set, DL model demonstrated the highest AUC (0.91; 95% CI: 0.87, 0.96), which was significantly higher than that of two senior radiologists [(AUC, 0.78; 95% CI: 0.71, 0.85; P < 0.001) and (AUC, 0.76; 95% CI: 0.70, 0.83; P < 0.001)] and two juniors radiologists [(AUC, 0.65; 95% CI: 0.58, 0.73; P < 0.001) and (AUC, 0.69; 95% CI: 0.62, 0.77; P < 0.001)]. DL model was significantly higher than clinical model [(AUC, 0.84; 95% CI: 0.79, 0.89; P = 0.019)], but there was no significant difference between DL model and clinical and DL combined model [(AUC, 0.94; 95% CI: 0.91, 0.97; P = 0.143)]. In the external test set, DL model also demonstrated the highest AUC (0.88, 95% CI: 0.81, 0.94), which was significantly higher than that of one of senior radiologists [(AUC, 0.75; 95% CI: 0.66, 0.84; P = 0.008) and (AUC, 0.81; 95% CI: 0.72, 0.89; P = 0.152)] and two junior radiologists [(AUC, 0.72; 95% CI: 0.62, 0.81; P = 0.002) and (AUC, 0.67; 95 CI: 0.57, 0.77; P < 0.001]. There was no significant difference between DL model and clinical model [(AUC, 0.85; 95% CI: 0.79, 0.91; P = 0.516)] and clinical + DL model [(AUC, 0.92; 95% CI: 0.87, 0.96; P = 0.093)]. Using DL model, the diagnostic ability of two junior radiologists was significantly improved. Interpretation: The DL model based on ultrasound imaging is a simple and helpful tool for preoperative diagnosis of gross ETE thyroid cancer, and its diagnostic performance is equivalent to or even better than that of senior radiologists. Funding: Jiangxi Provincial Natural Science Foundation (20224BAB216079), the Key Research and Development Program of Jiangxi Province (20181BBG70031), and the Interdisciplinary Innovation Fund of Natural Science, Nanchang University (9167-28220007-YB2110).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA