Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int Immunopharmacol ; 113(Pt A): 109303, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252469

RESUMEN

Plasma cell mastitis (PCM) and granulomatous mastitis (GM) are common inflammatory nonbacterial mastitis (NBM). However, the pathogenesis of NBM is still unclear. METHODS: In this study, we statistically analyzed the pathological features of PCM and GM using pathological HE staining and tissue transmission electron microscopy. The levels of MAC (C5b-9n), P-selectin, E-selectin, and ICAM-1 were detected through IHC, WB, ELISA, and qPCR. The expression level and location of MAC were observed by tissue immunological electron microscopy. In addition, exosomes were isolated from tissues, identified using transmission electron microscopy, and the densities were detected by Nano-FCM. Finally, the expression intensity of MAC in exosomes was detected by flow cytometry and immunoelectron microscopy. RESULTS: The damage and apoptosis of mammary duct epithelial cells are the common pathological features of PCM and GM. MAC is primarily located in the cell membrane of mammary ductal epithelial cells and is significantly expressed in PCM and GM. The density of exosomes in PCM and GM tissues was elevated, and MAC was highly expressed in exosomes. In addition, the expression of P-selectin, E-selectin, and ICAM-1 in PCM and GM was significantly higher than in the normal group. CONCLUSION: We found severe damage of the mammary duct epithelial cells in PCM and GM tissues, which was verified by relevant pathological methods. Earlier studies demonstrated that MAC is highly expressed in PCM and GM tissues and exosomes seem to play a very important role in the understanding of MAC. Furthermore, MAC is involved in inflammatory infiltration and lesion of mammary duct epithelial cells upregulated by P-selectin, E-selectin, and ICAM-1. These findings provide new insights into PCM and GM molecular mechanisms.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento , Mastitis Granulomatosa , Femenino , Humanos , Selectina E/metabolismo , Células Epiteliales/metabolismo , Mastitis Granulomatosa/metabolismo , Mastitis Granulomatosa/patología , Molécula 1 de Adhesión Intercelular/metabolismo , Células Plasmáticas/metabolismo , Glándulas Mamarias Humanas , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo
2.
Nat Commun ; 13(1): 3392, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697690

RESUMEN

Transition metal-catalyzed reactions of silacyclobutanes with a variety of π units have attracted much attention and become one of the most straightforward and efficient approaches to rapidly access structurally diverse organosilicon compounds. However, the reaction of silacyclobutanes with alkynes still suffers from some limitations: (1) internal alkynes remain challenging substrates; (2) expensive Pd- or Rh-based catalysts have been employed in all existing systems; (3) controlling chemodivergence has not yet been realized. Herein we realize Ni-catalyzed chemodivergent reactions of silacyclobutanes with alkynes. In comparison with the previous Pd or Rh catalytic systems, our Ni-catalytic system features: 1) complementary substrate scope; 2) ligand-controlled chemodivergence; 3) low cost. The ligand precisely dictates the pathway selectivity, leading to the divergent formation of (benzo)silacyclohexenes and allyl vinylsilanes. Moreover, we demonstrate that employment of a chiral phosphine ligand is capable of forming silicon-stereogenic allyl vinylsilanes in high yields and enantioselectivities. In addition, DFT calculation is performed to elucidate the origin of the switchable selectivities, which is mainly attributed to different ligand steric effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA