Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2318320121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457518

RESUMEN

Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.


Asunto(s)
Cianobacterias , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Alostérica , Microscopía por Crioelectrón , Cianobacterias/metabolismo , Adenosina Trifosfato/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo
2.
Nature ; 621(7980): 868-876, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674077

RESUMEN

Immune checkpoint blockade (ICB) benefits some patients with triple-negative breast cancer, but what distinguishes responders from non-responders is unclear1. Because ICB targets cell-cell interactions2, we investigated the impact of multicellular spatial organization on response, and explored how ICB remodels the tumour microenvironment. We show that cell phenotype, activation state and spatial location are intimately linked, influence ICB effect and differ in sensitive versus resistant tumours early on-treatment. We used imaging mass cytometry3 to profile the in situ expression of 43 proteins in tumours from patients in a randomized trial of neoadjuvant ICB, sampled at three timepoints (baseline, n = 243; early on-treatment, n = 207; post-treatment, n = 210). Multivariate modelling showed that the fractions of proliferating CD8+TCF1+T cells and MHCII+ cancer cells were dominant predictors of response, followed by cancer-immune interactions with B cells and granzyme B+ T cells. On-treatment, responsive tumours contained abundant granzyme B+ T cells, whereas resistant tumours were characterized by CD15+ cancer cells. Response was best predicted by combining tissue features before and on-treatment, pointing to a role for early biopsies in guiding adaptive therapy. Our findings show that multicellular spatial organization is a major determinant of ICB effect and suggest that its systematic enumeration in situ could help realize precision immuno-oncology.


Asunto(s)
Inmunoterapia , Linfocitos T , Neoplasias de la Mama Triple Negativas , Humanos , Linfocitos B/inmunología , Biopsia , Linfocitos T CD8-positivos/inmunología , Granzimas/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígeno Lewis X/metabolismo , Terapia Neoadyuvante , Medicina de Precisión , Pronóstico , Ensayos Clínicos Controlados Aleatorios como Asunto , Linfocitos T/inmunología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/terapia
3.
Front Plant Sci ; 13: 917784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991431

RESUMEN

Melatonin (MT), an important phytohormone synthesized naturally, was recently used to improve plant resistance against abiotic and biotic stresses. However, the effects of exogenous melatonin on photosynthetic performances have not yet been well clarified. We found that spraying of exogenous melatonin (100 µM) to leaves slightly affected the steady state values of CO2 assimilation rate (A N ), stomatal conductance (g s ) and mesophyll conductance (g m ) under high light in tobacco leaves. However, this exogenous melatonin strongly delayed the induction kinetics of g s and g m , leading to the slower induction speed of A N . During photosynthetic induction, A N is mainly limited by biochemistry in the absence of exogenous melatonin, but by CO2 diffusion conductance in the presence of exogenous melatonin. Therefore, exogenous melatonin can aggravate photosynthetic carbon loss during photosynthetic induction and should be used with care for crop plants grown under natural fluctuating light. Within the first 10 min after transition from low to high light, photosynthetic electron transport rates (ETR) for A N and photorespiration were suppressed in the presence of exogenous melatonin. Meanwhile, an important alternative electron sink, namely water-water cycle, was enhanced to dissipate excess light energy. These results indicate that exogenous melatonin upregulates water-water cycle to facilitate photoprotection. Taking together, this study is the first to demonstrate that exogenous melatonin inhibits dynamic photosynthesis and improves photoprotection in higher plants.

4.
Food Res Int ; 156: 111196, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35651050

RESUMEN

In this study, the protective effects of hot water (QW) and aqueous-ethanol extracts (QA) from Que Zui tea on non-alcoholic fatty liver disease (NAFLD) were investigated. Quantitative and qualitative analysis revealed that QW and QA were rich in polyphenols, especially 6'-O-caffeoylarbutin. Both QW and QA significantly reduced body weight and liver index, increased serum levels of high density lipoprotein cholesterol (HDL-C), and decreased the levels of total cholesterol (TC), triglyceride (TG), nonesterified free fatty acids (NEFA) and low density lipoprotein cholesterol (LDL-C) in NAFLD rats induced high fat diet. Furthermore, the contents of TC, TG, NEFA, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the liver tissues were inhibited after QW and QA administration. Histopathological examination showed that QW and QA significantly reduced liver lipid accumulation of NAFLD rats. In addition, QW and QA could enhance increase the activity of antioxidant (glutathione, superoxide dismutase and catalase) in the liver by regulation Nrf2 signaling pathway, thereby alleviating liver damage caused by lipid peroxidation. QW and QA activated AMPK/PPAR-α signaling pathway by increasing the expression of adiponectin and its receptor AdipoR2, thereby reducing fat production and enhancing fatty acid ß oxidation. These data suggested that QW and QA had the potential to in the prevention and treatment of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos no Esterificados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo , Ratas , , Triglicéridos
5.
Cells ; 11(2)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053368

RESUMEN

Fluctuating light is a typical light condition in nature and can cause selective photodamage to photosystem I (PSI). The sensitivity of PSI to fluctuating light is influenced by the amplitude of low/high light intensity. Tobacco mature leaves are tended to be horizontal to maximize the light absorption and photosynthesis, but young leaves are usually vertical to diminish the light absorption. Therefore, we tested the hypothesis that such regulation of the leaf angle in young leaves might protect PSI against photoinhibition under fluctuating light. We found that, upon a sudden increase in illumination, PSI was over-reduced in extreme young leaves but was oxidized in mature leaves. After fluctuating light treatment, such PSI over-reduction aggravated PSI photoinhibition in young leaves. Furthermore, the leaf angle was tightly correlated to the extent of PSI photoinhibition induced by fluctuating light. Therefore, vertical young leaves are more susceptible to PSI photoinhibition than horizontal mature leaves when exposed to the same fluctuating light. In young leaves, the vertical leaf angle decreased the light absorption and thus lowered the amplitude of low/high light intensity. Therefore, the regulation of the leaf angle was found for the first time as an important strategy used by young leaves to protect PSI against photoinhibition under fluctuating light. To our knowledge, we show here new insight into the photoprotection for PSI under fluctuating light in nature.


Asunto(s)
Luz , Nicotiana/anatomía & histología , Nicotiana/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de la radiación , Transporte de Electrón/efectos de la radiación , Fotosíntesis/efectos de la radiación
6.
Oral Dis ; 27(6): 1487-1497, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33031609

RESUMEN

OBJECTIVE: Experiments were performed to evaluate CYLD expression in human gingival tissue samples and to examine the effects of CYLD on inflammatory responses in lipopolysaccharide (LPS)- or TNF-α-stimulated human gingival fibroblasts (HGFs). METHODS: Immunohistochemistry for CYLD and p65 expression was performed with healthy and inflamed gingival tissue samples. siRNA was used to knock down the expression of CYLD in HGFs. Upon LPS or TNF-α stimulation, NF-κB activation was detected in control and CYLD-knockdown HGFs. RT-PCR was applied to determine gene expression. Western blot analyses were employed to assess protein expression. Immunofluorescence staining was carried out to evaluate the nuclear translocation of p65. RESULTS: Immunohistochemical staining showed the expression of CYLD in human gingival tissues. In addition, CYLD protein expression was reduced in inflamed gingival tissue samples compared with healthy tissue samples. CYLD knockdown greatly enhanced the mRNA expression of proinflammatory cytokines in LPS- or TNF-α-stimulated HGFs. Furthermore, knocking down CYLD expression increased LPS-stimulated NF-κB activation in HGFs. Unexpectedly, CYLD knockdown did not affect TNF-α-induced NF-κB activation. CONCLUSIONS: Our results suggest that CYLD participates in periodontal inflammatory responses by negatively regulating LPS-induced NF-κB signalling.


Asunto(s)
Enzima Desubiquitinante CYLD , Fibroblastos , Encía , Células Cultivadas , Enzimas Desubicuitinizantes , Humanos , Lipopolisacáridos , FN-kappa B
7.
Front Oncol ; 10: 620550, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33708618

RESUMEN

Pancreatic cancer is a high incidence, high degree of malignancy, and high mortality in the digestive system tumor. The incidence of pancreatic cancer in China has increased nearly six folds in the past 20 years, ranking fifth in the mortality rate of malignant tumors, so it is particularly important to actively explore clinical indicators with better diagnostic significance for pancreatic cancer. LncRNA performs an essential regulatory function in the occurrence, development, and metastasis of many kinds of tumors, playing both a carcinogenic role and a tumor suppressor gene. Here, we demonstrated the function and mechanism of LncRNA-XLOC_012370 in the development of pancreatic cancer. In our research, the abnormal upregulation of XLOC_012370 was observed in pancreatic cancer patients' tumor tissues. XLOC_012370 was related to tumor stage, lymph node metastasis, and overall survival. Silencing of XLOC_012370 prevented the proliferation, migration, and invasion via the NF-κB signal pathway. Further, miR-140-5p was identified as the target and downstream of XLOC_012370 and involved in pancreatic cancer progression. In vivo, knockdown of XLOC_012370 inhibited tumor growth via the NF-κB signal pathway. In conclusion, lncRNA-XLOC_012370 is closely related to some malignant clinicopathological features and prognosis of pancreatic cancer. Thus the miR-140-5p/NF-κB signal pathway might represent a promising treatment strategy to combat pancreatic cancer.

8.
Oral Dis ; 25(8): 1972-1982, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31361069

RESUMEN

OBJECTIVE: Macrophages could be fully polarized and acquire specific phenotype like M1, which considered to be essential for the alveolar bone destruction during the development of periodontitis. However, the molecular mechanisms underlying the effects of M1 macrophages on the alveolar bone destruction are still not clear yet. METHODS: Mouse periodontitis model was established to determine the involvement of M1 macrophages in the pathogenic process. Condition medium of the M1 macrophages (M1-CM) was incubated with pre-osteoblasts to evaluate its effects on the osteoblastogenesis. Cells after treatment with CM were used for RNA-sequencing, quantitative PCR, Western blotting, and immunofluorescence staining to figure out pathways involved in the inhibition of osteoblastogenesis. RESULTS: Increased infiltration of M1 macrophages was associated with alveolar bone destruction in periodontitis. M1-CM markedly suppressed the generation of osteoblasts as evidenced by decreased expressions of Runx2 and Ocn, as well as reduced activity of ALP. Interestingly, RNA-sequencing indicated the activation of TLR4/AP1 signaling pathway in pre-osteoblasts treated with CM. Inhibition of TLR4 reduced the translocation of AP1 and rescued the osteoblastogenesis reduced by M1-CM. CONCLUSION: M1 macrophages induce TLR4/AP1 signaling of pre-osteoblasts to inhibit the osteoblastogenesis via paracrine, at least partially contributing to alveolar bone destruction in periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Macrófagos/metabolismo , Periodontitis , Receptor Toll-Like 4 , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/patología , Animales , Ratones , Osteoblastos , Periodontitis/tratamiento farmacológico , Periodontitis/patología , Transducción de Señal
9.
Int J Mol Med ; 43(5): 2187-2198, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30896786

RESUMEN

Metformin serves an important role in improving the functions of endothelial progenitor cells (EPCs). MicroRNAs (miRNAs), small non­coding RNAs, have been investigated as significant regulators of EPC vascular functions. The present study investigated the molecular crosstalk between metformin and miRNA­130a (miR­130a) in the functions of EPCs exposed to palmitic acid (PA). Isolated EPCs were treated with metformin, PA, and metformin + PA, respectively. Cell Counting Kit­8, Transwell and Matrigel assays were performed to detect the proliferation, migration and tube formation ability of EPCs following different treatments. The expression of miR­130a, phosphatase and tensin homolog (PTEN) and phosphorylated­AKT was analyzed by reverse transcription­quantitative polymerase chain reaction and western blotting. The specific mechanism underlying the function of metformin in EPCs was further elucidated by transfecting miR­130a mimics and inhibitor to overexpress and inhibit the expression of miR­130a in EPCs, respectively. EPCs exhibited impaired functions of proliferation (P<0.01 compared with the control), migration (P<0.01 compared with the control) and tube formation (P<0.01 compared with the control) following treatment with PA, and the expression levels of miR­130a and PTEN were decreased and increased, respectively. However, the presence of metformin, or the overexpression of miR­130a using miR­130a mimic alleviated the impairment of angiogenesis and proliferation, decreased the expression of PTEN and activated the phosphoinositide­3 kinase/AKT pathway in EPCs exposed to PA. By contrast, downregulating the expression of miR­130a with a miR­130a inhibitor reversed the metformin­mediated protection. These results demonstrate the beneficial effect of miR­130a/PTEN on EPC functions, which can be regulated by metformin. The effects of metformin on improving PA­induced EPC dysfunction are mediated by miR­130a and PTEN, which may assist in the prevention and/or treatment of diabetic vascular disease.


Asunto(s)
Células Progenitoras Endoteliales/patología , Metformina/farmacología , MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , Ácido Palmítico/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citoprotección/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Masculino , MicroARNs/genética , Neovascularización Fisiológica/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley
10.
Kaohsiung J Med Sci ; 35(3): 139-145, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30887716

RESUMEN

Accumulating evidences indicates that chronic neuropathic pain is a kind of neuro-immune disorder with enhanced activation of the immune system. Although the prevalence is very high, neuropathic pain remains extremely difficult to cure. miRNAs are a group of short nonprotein coding RNAs, regulating target genes expression via targeting 3'-untranslated region. More and more research indicates that altered miRNAs expression profile relates to the pathogenesis of neuropathic pain. In this study, we firstly detected the expression of six candidate miRNAs in the plasma samples from 23 patients with neuropathic pain and 10 healthy controls. Subsequently, the level of miR-132 and miR-101 was detected in the sural nerve biopsies. We found miR-101 level was significantly repressed in both the plasma samples and sural nerve biopsies from neuropathic pain patients. Predicted by bioinformatics tools and confirmed by dual luciferase assay and immunoblotting, we identified that KPNB1 is a direct target of miR-101. The negative correlation between miR-101 and KPNB1 was also confirmed in the sural nerve biopsies, and miR-101 reduction relates to the activation of NF-κB signaling in vivo and in vitro which contributes to the pathogenesis of neuropathic pain.


Asunto(s)
Dolor Crónico/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Neuralgia/genética , Transducción de Señal , beta Carioferinas/metabolismo , Regiones no Traducidas 3'/genética , Adulto , Anciano , Secuencia de Bases , Estudios de Casos y Controles , Línea Celular Tumoral , Núcleo Celular/metabolismo , Dolor Crónico/sangre , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Masculino , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Neuralgia/sangre , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , beta Carioferinas/genética
11.
Phytother Res ; 32(12): 2447-2455, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30159926

RESUMEN

Cancer stem cells (CSCs) are considered to play essential roles in the process of origination, proliferation, migration, and invasion of cancer, and their properties are regulated by Wnt/ß-catenin pathway. Phenethyl isothiocyanate (PEITC) is a natural product obtained from cruciferous vegetables with anticancer activities. The present study aimed to investigate the inhibitory effect and the underlying mechanisms of PEITC on colorectal CSCs. In this study, we found that PEITC can significantly reduce the size and number of colorectal cancer cell spheroids in serum-free medium. With increasing PEITC concentrations (10-40 µM), the number of spheroids was reduced to about 10% of the control group, and the percentage of CD133+ cells was decreased by about 3-16 folds. PEITC also decreased the expression of CSC markers. Meanwhile, inhibition of proliferation as well as induction of apoptosis of colorectal CSCs was observed after PEITC treatment. Furthermore, through activating Wnt/ß-catenin pathway with LiCl, the inhibitory effects of PEITC on colorectal CSCs were diminished. Our data suggested that PEITC can be an effective inhibitor of colorectal CSCs by targeting Wnt/ß-catenin pathway.


Asunto(s)
Neoplasias Colorrectales/patología , Isotiocianatos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
12.
Artículo en Chino | MEDLINE | ID: mdl-29757550

RESUMEN

Objective:To analyze the functional change of horizontal semicircular canals after cochlear implantation.Method:Eighteen patients were enrolled in this study.Their vestibular function was evaluated by using the caloric test and video head impulse test before and one week,one month after CI surgery,respectively.The unilateral weakness(UW),slow phase velocity(SPV)in caloric test and gain in video head impulse test(vHIT-G)were observed.Caloric test was abnormal when UW>25% or SPV mean<6°/s,while vHIT was abnormal when vHIT-G<0.8.Result:The SPV of the implanted ear were[(10.36±8.01)°/s;(14.77±14.24)°/s]pre-operatively,[(6.45±7.52)°/s;(5.14±4.67)°/s]1 week post-operatively and[(6.05±3.86)°/s;(6.27±4.17)°/s]1 month post-operatively.Statistically significant difference(P<0.05)was found between pre-and post-operative period.The vHIT-G of the implanted ear were(0.73±0.33)pre-operatively,(0.65±0.32)1 week post-operatively and(0.71±0.36)1 month post-operatively.There was no statistically significant difference of vHIT-G between preand post-operative period(P(pre-operative/1 week post-operative)=0.084,P(pre-operative/1 month post-operative)=0.679).Four patients presented with vertigo and one of them manifested slight unsteadiness post-operatively.All symptoms resolved within 7 days.These symptoms had no correlate with age,gender,implantedear and results of vestibular test.Conclusion:Cochlear implantation can affect the horizontal semicircular canal function,and the video head impulse test and caloric test should be used in a complementary fashion.


Asunto(s)
Implantación Coclear , Prueba de Impulso Cefálico , Canales Semicirculares/fisiopatología , Pruebas Calóricas , Implantación Coclear/efectos adversos , Implantación Coclear/métodos , Humanos , Vértigo
13.
Onco Targets Ther ; 11: 2875-2890, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29844685

RESUMEN

BACKGROUND: Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. METHODS: The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. RESULTS: TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental for TNF-α-mediated NF-κB activation in GBC cells and can regulate TNF-α-mediated VEGF-C expression at the protein and transcriptional levels through the NF-κB pathway. RIP1 can regulate TNF-α-mediated lymphatic tube formation and metastasis in GBC cells both in vitro and vivo. The average optical density of RIP1 was linearly related to that of TNF-α protein and the lymphatic vessel density in GBC tissues. CONCLUSION: We conclude that RIP1 regulates TNF-α-mediated lymphangiogenesis and lymph node metastasis in GBC by modulating the NF-κB-VEGF-C pathway.

14.
Cancer Chemother Pharmacol ; 81(6): 979-980, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29713750

RESUMEN

Unfortunately, the online published article has error in Figure 4. The correct Figure 4 is given here.

15.
Cancer Chemother Pharmacol ; 81(6): 969-977, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29594332

RESUMEN

PURPOSE: Cancer stem cells (CSCs) are responsible for colorectal cancer (CRC) initiation, growth, and metastasis. Garlic-derived organosulfur compound diallyl trisulfide (DATS) possesses cancer suppressive properties. Wnt/ß-catenin signaling is a key target for CSCs inhibition. However, the interventional effect of DATS on colorectal CSCs has not been clarified. We aimed to illustrate the regulation of Wnt/ß-catenin in DATS-induced colorectal CSCs inhibition. METHODS: Serum-free medium culture was used to enrich colorectal CSCs. SW480 and DLD-1 sphere-forming cells were treated with different concentrations of DATS for 5 days; LiCl and ß-catenin plasmids were used to stimulate the activity of Wnt/ß-catenin pathway. The size and number of colonspheres were detected by tumorsphere formation assay; the expression of colorectal CSCs-related genes was detected by Western blotting and qRT-PCR; the capacities of colorectal CSCs proliferation and apoptosis were detected by Cell Counting Kit-8, Hoechst 33258 cell staining and flow cytometry, respectively. RESULTS: The levels of colorectal CSCs markers were elevated in the tumorspheres cells. DATS efficiently suppressed the activity of colorectal CSCs, as evidenced by reducing the size and number of colonspheres, decreasing the expression of colorectal CSCs markers, promoting apoptosis and inhibiting the proliferation of colorectal CSCs. Moreover, DATS suppressed the activity of Wnt/ß-catenin pathway, while upregulation of Wnt/ß-catenin diminished the inhibitory effect of DATS on colorectal CSCs. CONCLUSIONS: Wnt/ß-catenin pathway mediates DATS-induced colorectal CSCs suppression. These findings support the use of DATS for targeting colorectal CSCs.


Asunto(s)
Compuestos Alílicos/farmacología , Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Sulfuros/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Citometría de Flujo , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Retrovirology ; 15(1): 3, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29316955

RESUMEN

Antiretroviral therapy effectively suppresses, but does not eradicate HIV-1 infection. Persistent low-level HIV-1 can still be detected in plasma and cellular reservoirs even after years of effective therapy, and cessation of current treatments invariably results in resumption of viral replication. Efforts to eradicate persistent HIV-1 require a comprehensive examination of the quantity and genetic composition of HIV-1 within the plasma and infected cells located in the peripheral blood and tissues throughout the body. Single-molecule techniques, such as the single-copy assay and single-genome/proviral sequencing assays, have been employed to further our understanding of the source and viral dynamics of persistent HIV-1 during long-term effective therapy. The application of the single-copy assay, which quantifies plasma HIV-1 RNA down to a single copy, has revealed that viremia persists in the plasma and CSF after years of effective therapy. This low-level HIV-1 RNA also persists in the plasma following treatment intensification, treatment with latency reversing agents, cancer-related therapy, and bone marrow transplantation. Single-genome/proviral sequencing assays genetically characterise HIV-1 populations after passing through different selective pressures related to cell type, tissue type, compartment, or therapy. The application of these assays has revealed that the intracellular HIV-1 reservoir is stable and mainly located in CD4+ memory T cells. Moreover, this intracellular HIV-1 reservoir is primarily maintained by cellular proliferation due to homeostasis and antigenic stimulation, although cryptic replication may take place in anatomic sites where treatment is sub-optimal. The employment of single-genome/proviral sequencing showed that latency reversing agents broadly activate quiescent proviruses but do not clear the intracellular reservoir. Recently, full-length individual proviral sequencing assays have been developed and the application of these assays has revealed that the majority of intracellular HIV-1 DNA is genetically defective. In addition, the employment of these assays has shown that genetically intact proviruses are unequally distributed in memory T cell subsets during antiretroviral therapy. The application of single-molecule assays has enhanced the understanding of the source and dynamics of persistent HIV-1 in the plasma and cells of HIV-infected individuals. Future studies of the persistent HIV-1 reservoir and new treatment strategies to eradicate persistent virus will benefit from the utilization of these assays.


Asunto(s)
Infecciones por VIH/virología , VIH-1/aislamiento & purificación , Provirus/aislamiento & purificación , Carga Viral/métodos , Viremia/virología , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/sangre , Infecciones por VIH/inmunología , VIH-1/genética , VIH-1/fisiología , Humanos , Provirus/genética , Provirus/fisiología , ARN Viral/análisis , ARN Viral/sangre , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Nutrients ; 9(6)2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28587207

RESUMEN

The beneficial effects of tea consumption on cancer prevention have been generally reported, while (-)-Epigallocatechin-3-gallate (EGCG) is the major active component from green tea. Cancer stem cells (CSCs) play a crucial role in the process of cancer development. Targeting CSCs may be an effective way for cancer intervention. However, the effects of EGCG on colorectal CSCs and the underlying mechanisms remain unclear. Spheroid formation assay was used to enrich colorectal CSCs from colorectal cancer cell lines. Immunoblotting analysis and quantitative real-time polymerase chain reaction were used to measure the alterations of critical molecules expression. Immunofluorescence staining analysis was also used to determine the expression of CD133. We revealed that EGCG inhibited the spheroid formation capability of colorectal cancer cells as well as the expression of colorectal CSC markers, along with suppression of cell proliferation and induction of apoptosis. Moreover, we illustrated that EGCG downregulated the activation of Wnt/ß-catenin pathway, while upregulation of Wnt/ß-catenin diminished the inhibitory effects of EGCG on colorectal CSCs. Taken together, this study suggested that EGCG could be an effective natural compound targeting colorectal CSCs through suppression of Wnt/ß-catenin pathway, and thus may be a promising agent for colorectal cancer intervention.


Asunto(s)
Catequina/análogos & derivados , Neoplasias Colorrectales/patología , Vía de Señalización Wnt/efectos de los fármacos , Anticarcinógenos/farmacología , Apoptosis/efectos de los fármacos , Catequina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Té/química
18.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 25(2): 382-386, 2017 Apr.
Artículo en Chino | MEDLINE | ID: mdl-28446279

RESUMEN

OBJECTIVE: To study the effect of co-culture of stromal cells and acute myeloid leukemia(AML) cells on drug resistance of AML cells and its mechanism. METHODS: Stromal cells were co-cultured with acute myeloid leukemia cell HL-60 and then were treated with DNR, HHT and Ara-C for observing the sensitivity of HL-60 cells to drugs after incubation with HS-5. At the same time, the the inhibitor LY294002 of PI3K/AKT signaling pathway was used to treat the cells, so as to explore whether the changes of HL-60 sensitivity is associated with the activation of PI3K/AKT signal pathway after co-culture of cells. RESULTS: The statistical results of HL-60 cell inhibition rate showed that the HL-60 cell sensitivity to drugs was decreased after incubation with HS-5, the mRNA quantitation and immunblot detection showed that PI3K/AKT signaling pathway was activated after co-culture of HL-60 cells with HS-5 cells, in addition the CCND1, FOXO1, PTEN and other important genes were also changed significantly. CONCLUSION: After co-culture of HL-60 cells with HS-5, some important molecules of PI3K/AKT signal pathway are changed, such as CCND1,FOXO1, PTEN, finally leading to the change of HL-60 cell sensitivity to drugs.


Asunto(s)
Técnicas de Cocultivo , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas c-akt/genética , Apoptosis , Resistencia a Antineoplásicos/genética , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/fisiología , Células del Estroma
19.
Phytother Res ; 31(4): 680-688, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28198062

RESUMEN

Cancer stem cells (CSCs) are highly implicated in the progression of human cancers. Thus, targeting CSCs may be a promising strategy for cancer therapy. Wnt/ß-catenin and Sonic Hedgehog pathways play an important regulatory role in maintaining CSC characteristics. Natural compounds, such as curcumin, possess chemopreventive properties. However, the interventional effect of curcumin on lung CSCs has not been clarified. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We showed that the levels of lung CSC markers (CD133, CD44, ALDHA1, Nanog and Oct4) and the number of CD133-positive cells were significantly elevated in the sphere-forming cells. We further illustrated that curcumin efficiently abolished lung CSC traits, as evidenced by reduced tumorsphere formation, reduced number of CD133-positive cells, decreased expression levels of lung CSC markers, as well as proliferation inhibition and apoptosis induction. Moreover, we demonstrated that curcumin suppressed the activation of both Wnt/ß-catenin and Sonic Hedgehog pathways. Taken together, our data suggested that curcumin exhibited its interventional effect on lung CSCs via inhibition of Wnt/ß-catenin and Sonic Hedgehog pathways. These novel findings could provide new insights into the potential therapeutic application of curcumin in lung CSC elimination and cancer intervention. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Curcumina/uso terapéutico , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Vía de Señalización Wnt/genética , Apoptosis , Proliferación Celular/efectos de los fármacos , Curcumina/administración & dosificación , Curcumina/farmacología , Humanos , Transducción de Señal
20.
Sci Rep ; 6: 33910, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27670968

RESUMEN

Cancer is one of the main causes of threats to human life. Identification of anticancer peptides is important for developing effective anticancer drugs. In this paper, we developed an improved predictor to identify the anticancer peptides. The amino acid composition (AAC), the average chemical shifts (acACS) and the reduced amino acid composition (RAAC) were selected to predict the anticancer peptides by using the support vector machine (SVM). The overall prediction accuracy reaches to 93.61% in jackknife test. The results indicated that the combined parameter was helpful to the prediction for anticancer peptides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA