Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phys Chem Chem Phys ; 26(20): 14857-14865, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738300

RESUMEN

Unveiling the role of heteroatom compounds in heavy oil viscosity is pivotal for finding targeted viscosity reduction methods to improve oil recovery. This research investigates the impact of heteroatoms in asphaltene molecules by utilizing quantum chemical calculations and molecular dynamics simulations to analyze their electrostatic potential characteristics, pairwise interactions, and dynamic behavior within realistic reservoirs. Heteroatom compounds can influence the molecular-level properties of asphaltenes and thus impact the macroscopic behavior of heavy oils. Research results suggest that the presence of ketone and aromatic rings in asphaltene molecules leads to the unrestricted movement of pi electrons due to their collective electronegativity. Two distinct configurations of asphaltene dimers, face-to-face, and edge-to-face, were observed. Intermolecular interactions were predominantly governed by van der Waals forces, highlighting their significant role in stabilizing asphaltene aggregates. The distribution of asphaltene molecules in the oil phase can be summarized as the "rebar-cement" theory. In the heteroatom-free system, the face-to-face peaks in the radial distribution function exhibit significantly reduced magnitudes compared to those in the heteroatom-containing system. This emphasizes the pivotal function of heteroatoms in connecting molecular components to form a more compact asphaltene structure, which may result in a higher viscosity of heavy oil. These findings give insight into the significance of heteroatoms in bridging molecular components and shaping the intricate structure of asphaltene and advance our understanding of heavy oil viscosity properties.

2.
Free Radic Biol Med ; 213: 233-247, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38215891

RESUMEN

BACKGROUND & AIMS: Hepatitis B virus (HBV) reactivation is a major problem that must be overcome during chemotherapy for HBV-related hepatocellular carcinoma (HCC). However, the mechanism underlying chemotherapy-associated HBV reactivation is still not fully understood, hindering the development of improved HBV-related HCC treatments. METHODS: A meta-analysis was performed to assess the HBV reactivation risk during transcatheter arterial chemoembolization (TACE). To investigate the regulatory effects and mechanisms of 5-FU on HBV replication, an HBV mouse model was established by pAAV-HBV1.2 hydrodynamic injection followed by intraperitoneal 5-FU injection, and different in vitro models (HepG2.2.15 or Huh7 cells) were established. Realtime RT‒qPCR, western blotting, luciferase assays, and immunofluorescence were used to determine viral parameters. We also explored the underlying mechanisms by RNA-seq, oxidative stress evaluation and autophagy assessment. RESULTS: The pooled estimated rate of HBV reactivation in patients receiving TACE was 30.3 % (95 % CI, 23.1%-37.4 %). 5-FU, which is a chemotherapeutic agent commonly used in TACE, promoted HBV replication in vitro and in vivo. Mechanistically, 5-FU treatment obviously increased autophagosome formation, as shown by increased LC3-II levels. Additionally, 5-FU impaired autophagic degradation, as shown by marked p62 and mCherry-GFP-LC3 upregulation, ultimately promoting HBV replication and secretion. Autophagy inhibition by 3-methyladenine or chloroquine significantly altered 5-FU-induced HBV replication. Furthermore, 5-FU-induced autophagy and HBV replication were markedly attenuated with a reactive oxygen species (ROS) scavenger. CONCLUSIONS: Together, our results indicate that ROS-induced autophagosome formation and autophagic degradation play a critical role in 5-FU-induced HBV reactivation.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Ratones , Animales , Humanos , Virus de la Hepatitis B/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Especies Reactivas de Oxígeno/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Quimioembolización Terapéutica/métodos , Autofagia , Estrés Oxidativo , Fluorouracilo/farmacología , Replicación Viral
3.
Arch Pharm (Weinheim) ; 357(1): e2300427, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37853667

RESUMEN

Apostichopus japonicus, also known as Stichopus japonicus, with medicinal and food homologous figures, is a globally recognized precious ingredient with extremely high nutritional value. There is no relevant review available through literature search, so this article selects the research articles through the keywords "sea cucumber" and "Apostichopus japonicus (Stichopus japonicus)" in six professional databases, such as Wiley, PubMed, ScienceDirect, ACS, Springer, and Web of Science, from 2000 to the present, summarizing the extraction, isolation, and purification methods for the four major categories (polysaccharides, proteins and peptides, saponins, and other components) of the A. japonicus chemical substances and 10 effective biological activities of A. japonicus. Included are anticoagulation, anticancer/antitumor activities, hematopoiesis, regulation of gut microbiota, and immune regulatory activities that correspond to traditional efficacy. Literature support is provided for the development of medicines and functional foods and related aspects that play a leading role in future directions.


Asunto(s)
Saponinas , Pepinos de Mar , Stichopus , Animales , Stichopus/química , Stichopus/fisiología , Relación Estructura-Actividad , Alimentos
4.
Chem Biodivers ; 21(2): e202301639, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38062000

RESUMEN

Cnidium officinale Makino (COM), a perennial herbaceous plant in the Apiaceous family, widely distribute in Eastern Asia and Asia-Temperate. It has a long history application as a traditional medicine for invigorating the blood and removing blood stasis, and also has been employed to diet, pesticide, herbal bathing materials, the cosmetic and skin care industry. However, there has been no associated review of literature in the past half a century (1967-2023). By searching the international authoritative databases and collecting 229 literatures closely related to COM, herewith a comprehensive and systematic review was conducted. The phytology includes plant distribution and botanical characteristics. The phytochemistry covers 8 major categories, 208 compounds in total, and the quantitative determination of 14 monomer compounds, total polyphenols and total flavonoids. The clinical trial in pregnant women and toxic experiments in mice, the pharmacology of 7 aspects and 82 frequently used prescriptions are summarized. It is expected that this paper will provide forward-looking scientific thinking and literature support for the further modern research, development and utilization of COM.


Asunto(s)
Cnidium , Medicina Tradicional , Embarazo , Humanos , Femenino , Ratones , Animales , Cnidium/química , Etnofarmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicina Tradicional China
5.
Nat Commun ; 14(1): 7156, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935661

RESUMEN

The formation and consequences of polyploidization in animals with clonal reproduction remain largely unknown. Clade I root-knot nematodes (RKNs), characterized by parthenogenesis and allopolyploidy, show a widespread geographical distribution and extensive agricultural destruction. Here, we generated 4 unzipped polyploid RKN genomes and identified a putative novel alternative telomeric element. Then we reconstructed 4 chromosome-level assemblies and resolved their genome structures as AAB for triploid and AABB for tetraploid. The phylogeny of subgenomes revealed polyploid RKN origin patterns as hybridization between haploid and unreduced gametes. We also observed extensive chromosomal fusions and homologous gene expression decrease after polyploidization, which might offset the disadvantages of clonal reproduction and increase fitness in polyploid RKNs. Our results reveal a rare pathway of polyploidization in parthenogenic polyploid animals and provide a large number of high-precision genetic resources that could be used for RKN prevention and control.


Asunto(s)
Nematodos , Poliploidía , Animales , Hibridación Genética , Triploidía , Células Germinativas , Cromosomas , Nematodos/genética
6.
Emerg Microbes Infect ; 12(2): 2261556, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37725090

RESUMEN

Chronic hepatitis B virus (HBV) infection remains one of the major global public health concerns, and it develop into liver fibrosis, cirrhosis, and hepatocellular carcinoma. Recent evidence suggests that endosomal and autophagic vesicles are beneficial for HBV replication. However, it has not been well elucidated how HBV exploits such intracellular vesicle systems for its replication. RAB5A, a member of small GTPase family, plays crucial roles in early endosome biogenesis and autophagy initiation. We observed that RAB5A mRNA and protein levels were significantly increased in HBV-expressing hepatoma cell lines as well as in liver tissue samples from chronic HBV-infected patients. Moreover, RAB5A silencing inhibited HBV replication and subviral particle (SVP) expression significantly in HBV-transfected and -infected hepatoma cells, whereas RAB5A overexpression increased them. Mechanistically, RAB5A increases HBV replication through enhancement of early endosome (EE) - late endosome (LE) activation by interacting with EEA1, as well as enhancing autophagy induction by interacting with VPS34. Additionally, HBV infection enhances RAB5A-mediated dual activation of EE-LE system and autophagy. Collectively, our findings highlight that HBV utilizes RAB5A-mediated dual activation of endosomal and autophagic vesicle pathways for its own replication and persistence. Therefore, RAB5A is a potential target for chronic HBV infection treatment.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Hepatitis B , Proteínas de Unión al GTP Monoméricas , Humanos , Autofagia/genética , Endosomas , Virus de la Hepatitis B/genética , Replicación Viral
7.
Arterioscler Thromb Vasc Biol ; 43(11): e468-e489, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37767704

RESUMEN

BACKGROUND: Current therapies cannot completely reverse advanced atherosclerosis. High levels of amino acids, induced by Western diet, stimulate mTORC1 (mammalian target of rapamycin complex 1)-autophagy defects in macrophages, accelerating atherosclerotic plaque progression. In addition, autophagy-lysosomal dysfunction contributes to plaque necrotic core enlargement and lipid accumulation. Therefore, it is essential to investigate the novel mechanism and molecules to reverse amino acid-mTORC1-autophagy signaling dysfunction in macrophages of patients with advanced atherosclerosis. METHODS: We observed that Gpr137b-ps (G-protein-coupled receptor 137B, pseudogene) was upregulated in advanced atherosclerotic plaques. The effect of Gpr137b-ps on the progression of atherosclerosis was studied by generating advanced plaques in ApoE-/- mice with cardiac-specific knockout of Gpr137b-ps. Bone marrow-derived macrophages and mouse mononuclear macrophage cell line RAW264.7 cells were subjected to starvation or amino acid stimulation to study amino acid-mTORC1-autophagy signaling. Using both gain- and loss-of-function approaches, we explored the mechanism of Gpr137b-ps-regulated autophagy. RESULTS: Our results demonstrated that Gpr137b-ps deficiency led to enhanced autophagy in macrophages and reduced atherosclerotic lesions, characterized by fewer necrotic cores and less lipid accumulation. Knockdown of Gpr137b-ps increased autophagy and prevented amino acid-induced mTORC1 signaling activation. As the downstream binding protein of Gpr137b-ps, HSC70 (heat shock cognate 70) rescued the impaired autophagy induced by Gpr137b-ps. Furthermore, Gpr137b-ps interfered with the HSC70 binding to G3BP (Ras GTPase-activating protein-binding protein), which tethers the TSC (tuberous sclerosis complex) complex to lysosomes and suppresses mTORC1 signaling. In addition to verifying that the NTF2 (nuclear transport factor 2) domain of G3BP binds to HSC70 by in vitro protein synthesis, we further demonstrated that HSC70 binds to the NTF2 domain of G3BP through its W90-F92 motif by using computational modeling. CONCLUSIONS: These findings reveal that Gpr137b-ps plays an essential role in the regulation of macrophage autophagy, which is crucial for the progression of advanced atherosclerosis. Gpr137b-ps impairs the interaction of HSC70 with G3BP to regulate amino acid-mTORC1-autophagy signaling, and these results provide a new potential therapeutic direction for the treatment of advanced atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , ARN Largo no Codificante , Humanos , Ratones , Animales , ARN Largo no Codificante/metabolismo , Aterosclerosis/patología , Placa Aterosclerótica/patología , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia/fisiología , Aminoácidos/metabolismo , Lípidos , Mamíferos/genética
8.
Fitoterapia ; 168: 105561, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37290493

RESUMEN

Kalopanax septemlobus is a traditional herbal medicine for multiple medicinal sites (root, stem bark, bark, leaves) in East Asia, and its bark has a significant curative effect on rheumatoid arthritis. In the past 13 years (2009-2022), the research literature accounted for 50% of the total, and it is becoming a research highlight of the relevant international scholars (ACS, ScienceDirect, PubMed, Springer, and Web of Science). This paper is the first comprehensive review of its chemistry, pharmacology, and toxicity for more than half a century (1966-2022), in which the chemical studies include triterpenoids & saponins (86 compounds), and phenylpropanoids (26 compounds), involving 46 new structures and one biomarker-triterpenoid saponin (Kalopanaxsaponin A); According to the number of literature, the pharmacological effects and mechanisms are systematically divided into five aspects, such as: anti-inflammatory, anti-tumor, antioxidant, antifungal and anti-diabetic, etc., covering its toxicological progress. To provide literature support for the exploration of new drugs against related diseases, such as rheumatoid arthritis, which are becoming younger nowadays.


Asunto(s)
Artritis Reumatoide , Kalopanax , Plantas Medicinales , Estructura Molecular , Medicina Tradicional , Fitoquímicos/farmacología , Fitoquímicos/química , Etnofarmacología , Medicina Tradicional China , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
Environ Pollut ; 333: 122088, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348694

RESUMEN

As a novel chiral neonicotinoid insecticide, Paichongding (IPP) has been widely applied in agriculture due to its excellent insecticidal activity. However, the enantioselective metabolism of IPP stereoisomers (5R7R-IPP, 5S7S-IPP, 5R7S-IPP, and 5S7R-IPP) mediated by enzymes in non-target organisms, especially the cytochrome P450s (CYPs), remains unknown. To address this knowledge gap, we developed an integrated computational framework to elucidate the binding interactions and enantioselective metabolism of IPP stereoisomers in human CYP3A4. The results reveal that 5R7R-IPP shows much stronger binding affinity to CYP3A4 than 5S7S-IPP, while enantiomers 5R7S-IPP and 5S7R-IPP have no essential difference in their binding potential, owing to their specific interactions with key CYP3A4 residues. Although enantiomers 5R7R-IPP and 5S7S-IPP feature distinct binding modes resulting from the chiral differences, their transformation activities are slightly different, with C5 and C13 being the primary metabolic sites, respectively. In contrast, CYP3A4 preferably metabolizes 5R7S-IPP over 5S7R-IPP. The metabolism of epimers 5R7R-IPP and 5R7S-IPP share C5-hydroxylation routes due to the conserved 5R-conformaitons, but differ with the transformation routes at C11/C13 and C3 sites. The 7R-chirality of 5S7R-IPP significantly reduces the metabolic potency compared to 5S7S-IPP. CYP3A4-catalyzed hydroxylation and desaturation of IPP stereoisomers generate various chiral metabolites, with C5- and C13-hydroxyIPPs further transforming into depropylated products. Furthermore, the toxicity assessment reveals that IPP, along with the majority of its hydroxylated, desaturated, and depropylated metabolites, can potentially induce adverse effects on human health, specifically hepatotoxicity, respiratory toxicity, and carcinogenicity. This study provides valuable insights into the enantioselective fate of chiral IPP metabolism by CYP3A4, and the identified metabolites can serve as potential biomarkers for monitoring IPP exposure and associated health risk in human body.


Asunto(s)
Insecticidas , Humanos , Insecticidas/metabolismo , Citocromo P-450 CYP3A , Estereoisomerismo , Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450
10.
Sci Total Environ ; 891: 164503, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257598

RESUMEN

Nicotine is the most abundant alkaloid compound in cigarette smoke and a known "emerging contaminant" in gas and aqueous environments. The main environmental behavior of nicotine is to be deposited on various surfaces. Aerosol droplets have a rich specific surface area, which has a great influence on air quality and human health. However, the microscopic interaction between aqueous nanoparticles and nicotine has not been revealed. In this work, the theoretical simulation of the adsorption and reaction properties of nicotine onto aerosol droplets is performed. The strong preference for nicotine on aqueous particle surfaces is firstly proven, and its interface retention rate is about 73 %, 4-7 times larger than that in the air/water phase. The k value of the interface reaction (heterogeneous reaction) is 4.34 × 10-9 cm3 molecule-1 s-1, which is about 80 and 571 times higher than that of the gaseous and aqueous reactions (homogeneous reaction). Interface environment can promote the oxidation of nicotine by •OH, and indirectly promote the rapid generation of toxic HNCO. The reaction rate constant of nicotine with •OH decreases with the increase of aerosol acidity, subsequently impeding the formation of HNCO. Considering the larger rate constant at the interface environment, the total effect of aqueous aerosol should be to improve the formation of HNCO. This work provides insight into the adsorption and oxidation of nicotine on the surface of the aerosol and is helpful in accurately evaluating its environmental fate and risk.

11.
Mol Cancer ; 22(1): 4, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624516

RESUMEN

BACKGROUND: Metastatic colonization is one of the critical steps in tumor metastasis. A pre-metastatic niche is required for metastatic colonization and is determined by tumor-stroma interactions, yet the mechanistic underpinnings remain incompletely understood. METHODS: PCR-based miRNome profiling, qPCR, immunofluorescent analyses evaluated the expression of exosomal miR-141 and cell-to-cell communication. LC-MS/MS proteomic profiling and Dual-Luciferase analyses identified YAP1 as the direct target of miR-141. Human cytokine profiling, ChIP, luciferase reporter assays, and subcellular fractionation analyses confirmed YAP1 in modulating GROα production. A series of in vitro tumorigenic assays, an ex vivo model and Yap1 stromal conditional knockout (cKO) mouse model demonstrated the roles of miR-141/YAP1/GROα/CXCR1/2 signaling cascade. RNAi, CRISPR/Cas9 and CRISPRi systems were used for gene silencing. Blood sera, OvCa tumor tissue samples, and tissue array were included for clinical correlations. RESULTS: Hsa-miR-141-3p (miR-141), an exosomal miRNA, is highly secreted by ovarian cancer cells and reprograms stromal fibroblasts into proinflammatory cancer-associated fibroblasts (CAFs), facilitating metastatic colonization. A mechanistic study showed that miR-141 targeted YAP1, a critical effector of the Hippo pathway, reducing the nuclear YAP1/TAZ ratio and enhancing GROα production from stromal fibroblasts. Stromal-specific knockout (cKO) of Yap1 in murine models shaped the GROα-enriched microenvironment, facilitating in vivo tumor colonization, but this effect was reversed after Cxcr1/2 depletion in OvCa cells. The YAP1/GROα correlation was demonstrated in clinical samples, highlighting the clinical relevance of this research and providing a potential therapeutic intervention for impeding premetastatic niche formation and metastatic progression of ovarian cancers. CONCLUSIONS: This study uncovers miR-141 as an OvCa-derived exosomal microRNA mediating the tumor-stroma interactions and the formation of tumor-promoting stromal niche through activating YAP1/GROα/CXCRs signaling cascade, providing new insight into therapy for OvCa patients with peritoneal metastases.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Animales , Ratones , Femenino , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Neoplasias Ováricas/genética , MicroARNs/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Microambiente Tumoral
12.
PLoS One ; 18(1): e0280303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36696381

RESUMEN

With the expansion of protected vegetable growing areas (PVGAs), viral plant diseases have become more prevalent, causing severe economic losses to the vegetable production industry in China. At present, researches on plant viruses mainly focus on plants, but there is only a few reports on the species of viruses in surface water from PVGAs. The surface water samples in PVGAs are representative to a certain extent, which has an important reference value for studying the characteristics of plant viruses in surface water. The purpose of this study was to identify the diversity and the possibility of entering disease infection cycle of plant viruses in water samples collected from PVGAs in eastern China. A total of 144 water samples were collected, and eight plant viruses including tobacco mosaic virus (TMV, 8.33%), cucumber green mottle mosaic virus (CGMMV, 33.33%), pepper mild mottle virus (PMMoV, 6.94%), cucumber mosaic virus (CMV, 0.69%), tomato masaic virus (ToMV, 3.47%), tomato mottle mosaic virus (ToMMV, 0.69%), tomato chlorosis virus (ToCV, 4.17%), and tomato yellow leaf curl virus (TYLCV, 5.56%) were examined using RT-PCR and PCR. The species of viruses in surface water varied greatly by location. CGMMV, TMV, ToCV, ToMV, ToMMV, and TYLCV were identified in Shandong, a northern part of Eastern China, whereas only PMMoV was found in Shanghai, a southern part of Eastern China. After healthy tobacco plants were inoculated with the concentrated solutions of TMV, ToMV, CGMMV, and PMMoV, could cause disease in healthy tobacco, indicating that the plant viruses in the concentrated solution have the infectivity, and the plant viruses in surface water have the possibility of entering the infection cycle of disease. The results will improve the understanding of the potential risks of waterborne disease transmission.


Asunto(s)
Virus de Plantas , Virus del Mosaico del Tabaco , Verduras , Agua , China , Virus del Mosaico del Tabaco/genética , Enfermedades de las Plantas
13.
Biochem Pharmacol ; 200: 115044, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460630

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) has been proposed as a target for melanoma prevention. Luteolin, a bioactive flavonoid abundant inmedicinal herbs, has been reported to have anti-melanoma activity in vitro. However, its in vivo anti-melanoma effects and underlying mechanisms have not been fully elucidated. In this study, ten cell lines and two mouse models (B16F10 allograft and A375 xenograft models) were used for assessing the in vitro and in vivo anti-melanoma effects of luteolin. A STAT3 over-activated stable A375 cell line was used to determine the contribution of STAT3 signaling in luteolin's anti-melanoma effects. Results showed that luteolin dose-dependently reduced viability of melanoma cells. Luteolin also induced apoptosis in, and suppressed migration and invasion of, A375 and B16F10 melanoma cells. Mechanistically, luteolin inhibited phosphorylation of STAT3 and Src (an upstream kinase of STAT3), accelerated ubiquitin-proteasome pathway-mediated STAT3 degradation, and downregulated the expression of STAT3-targeted genes involved in cell survival and invasion in melanoma cells. Molecular modelling and surface plasmon resonance imaging showed that luteolin stably bound to the protein kinase domain of Src. Animal studies demonstrated that prophylactic administration of luteolin restrained melanoma growth and Src/STAT3 signaling in both A375 and B16F10 melanoma-bearing mice. Moreover, luteolin's anti-melanoma effects were diminished by STAT3 over-activation in A375 cells. Our findings indicate that luteolin inhibits STAT3 signaling by suppressing STAT3 activation and promoting STAT3 protein degradation in melanoma cells, thereby exhibiting anti-melanoma effects. This study provides further pharmacological groundwork for developing luteolin as a chemopreventive agent against melanoma.


Asunto(s)
Luteolina , Melanoma , Factor de Transcripción STAT3 , Animales , Apoptosis , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Luteolina/farmacología , Melanoma/tratamiento farmacológico , Ratones , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Factor de Transcripción STAT3/metabolismo , Ubiquitinación
14.
Adv Mater ; 34(15): e2109568, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35151235

RESUMEN

Reactive oxygen species (ROS) production efficiencies of the nanocatalysts are highly desired for cancer therapy, but currently the ROS generation efficiency is still far from defecting the tumors. Therefore, improving their ROS generation ability is highly desirable for cancer therapy. Herein, inspired by the electrostatic preorganization effect during the catalysis of natural protein enzymes, a human self-driven catalysis-promoting system, TENG-CatSystem is developed, to improve catalytic cancer therapy. The TENG-CatSystem is mainly composed of three elements: a human self-driven triboelectric nanogenerator (TENG) as the electric field stimulator to provide electric pulses with high biosafety, a nanozyme comprising a 1D ferriporphyrin covalent organic framework coated on a carbon nanotube (COF-CNT) to generate ROS, and a COF-CNT-embedded conductive hydrogel that can be injected into the tumor tissues to increase local accumulation of COF-CNT and decrease the electrical impedances of tissues. Under the human self-generated electric field provided by the wearable TENG, the peroxidase-like activity of the COF-CNT is fourfold higher than that without an electric field. Highly malignant 4T1 breast carcinoma in mice is significantly suppressed using the TENG-CatSystem. The human self-driven TENG-CatSystem not only demonstrates high catalytic ROS generation efficiency for improved cancer therapy, but also offers a new therapeutic mode for self-driven at-home therapy.


Asunto(s)
Nanotubos de Carbono , Neoplasias , Animales , Catálisis , Electrones , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno
15.
Emerg Microbes Infect ; 11(1): 616-628, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35109781

RESUMEN

Previous studies have revealed multiple tissue- or cell-specific or enriched miRNA profiles. However, miRNA profiles enriched in hepatic cell types and their effect on HBV replication have not been well elucidated. In this study, primary human hepatocytes (PHHs), Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) were prepared from liver specimens of non-HBV-infected patients. Four hepatic cell type-enriched miRNA profiles were identified from purified liver cells miRNA microarray assay. The results revealed that 12 miRNAs, including miR-122-5p and miR-192-3p were PHH-enriched; 9 miRNAs, including miR-142-5p and miR-155-5p were KC-enriched; 6 miRNAs, including miR-126-3p and miR-222-3p were LSEC-enriched; and 14 miRNAs, including miR-214-3p and miR-199a-3p were HSC-enriched. By testing the effect of 11 PHH-enriched miRNAs on HBV production, we observed that miR-192-3p had the greatest pro-virus effect in hepatic cell lines. Moreover, we further found that miR-192-3p promoted HBV replication and gene expression through inhibiting Akt/mTOR signalling by direct targeting of ZNF143 in HepG2.2.15 cells. Additionally, the serum and hepatic miR-192-3p expression levels were significantly higher in chronic hepatitis B patients than in healthy controls and serum miR-192-3p positively correlated with the serum levels of HBV DNA and HBsAg. Collectively, we identified miRNA profiles enriched in four hepatic cell types and revealed that PHH-enriched miR-192-3p promoted HBV replication through inhibiting Akt/mTOR signalling by direct targeting of ZNF143 in hepatic cell lines. Our study provides a specific perspective for the role of hepatic cell type-enriched miRNA in interaction with viral replication and various liver pathogenesis.


Asunto(s)
Virus de la Hepatitis B , MicroARNs , Células Endoteliales/metabolismo , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/patología , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Transactivadores
16.
Front Cell Infect Microbiol ; 12: 804011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186790

RESUMEN

Hepatitis B virus (HBV) infection causes acute and chronic liver diseases, including severe hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Interferon alpha 2a (IFNα-2a) is commonly used for treating chronic HBV infection. However, its efficacy remains relatively low. Yet, the immunological and molecular mechanisms for successful IFNα-2a treatment remain elusive. One issue is whether the application of increasing IFNα doses may modulate cellular processes and HBV replication in hepatic cells. In the present study, we focused on the interaction of IFNα signaling with other cellular signaling pathways and the consequence for HBV replication. The results showed that with the concentration of 6000 U/ml IFNα-2a treatment downregulated the activity of not only the Akt/mTOR signaling but also the AMPK signaling. Additionally, IFNα-2a treatment increased the formation of the autophagosomes by blocking autophagic degradation. Furthermore, IFNα-2a treatment inhibited the Akt/mTOR signaling and initiated autophagy under low and high glucose concentrations. In reverse, inhibition of autophagy using 3-methyladenine (3-MA) and glucose concentrations influenced the expression of IFNα-2a-induced ISG15 and IFITM1. Despite of ISGs induction, HBV replication and gene expression in HepG2.2.15 cells, a cell model with continuous HBV replication, were slightly increased at high doses of IFNα-2a. In conclusion, our study indicates that IFNα-2a treatment may interfere with multiple intracellular signaling pathways, facilitate autophagy initiation, and block autophagic degradation, thereby resulting in slightly enhanced HBV replication.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Interferón-alfa , Replicación Viral , Autofagia , Hepatitis B/tratamiento farmacológico , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/fisiología , Humanos , Interferón-alfa/farmacología , Replicación Viral/efectos de los fármacos
17.
Hepatology ; 75(2): 438-454, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34580902

RESUMEN

BACKGROUND AND AIMS: HBV infection has been reported to trigger endoplasmic reticulum (ER) stress and initiate autophagy. However, how ER stress and autophagy influence HBV production remains elusive. Here, we studied the effect of tunicamycin (TM), an N-glycosylation inhibitor and ER stress inducer, on HBV replication and secretion and examined the underlying mechanisms. APPROACH AND RESULTS: Protein disulfide isomerase (an ER marker), microtubule-associated protein 1 light chain 3 beta (an autophagosome [AP] marker), and sequestosome-1 (a typical cargo for autophagic degradation) expression were tested in liver tissues of patients with chronic HBV infection and hepatoma cell lines. The role of TM treatment in HBV production and trafficking was examined in hepatoma cell lines. TM treatment that mimics HBV infection triggered ER stress and increased AP formation, resulting in enhanced HBV replication and secretion of subviral particles (SVPs) and naked capsids. Additionally, TM reduced the number of early endosomes and HBsAg localization in this compartment, causing HBsAg/SVPs to accumulate in the ER. Thus, TM-induced AP formation serves as an alternative pathway for HBsAg/SVP trafficking. Importantly, TM inhibited AP-lysosome fusion, accompanied by enhanced AP/late endosome (LE)/multivesicular body fusion, to release HBsAg/SVPs through, or along with, exosome release. Notably, TM treatment inhibited HBsAg glycosylation, resulting in impairment of HBV virions' envelopment and secretion, but it was not critical for HBsAg/SVP trafficking in our cell systems. CONCLUSIONS: TM-induced ER stress and autophagic flux promoted HBV replication and the release of SVPs and naked capsids through the AP-LE/MVB axis.


Asunto(s)
Antivirales/farmacología , Carcinoma Hepatocelular/metabolismo , Estrés del Retículo Endoplásmico , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/fisiopatología , Neoplasias Hepáticas/metabolismo , Tunicamicina/farmacología , Replicación Viral , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Cápside , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endosomas/efectos de los fármacos , Glicosilación/efectos de los fármacos , Antígenos de Superficie de la Hepatitis B/metabolismo , Hepatitis B Crónica/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Cuerpos Multivesiculares , Proteína Disulfuro Isomerasas/metabolismo , Proteína Sequestosoma-1/metabolismo , Virión
18.
Sci Total Environ ; 807(Pt 3): 150974, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34656601

RESUMEN

Emission of 2-chlorophenols (2-CPs) can cause serious air pollution and health problems. Here, the reaction kinetics and products of key radicals in 2-CPs photo-oxidation are explored in both gaseous and heterogeneous reactions. Quantum chemical calculations show that •OH-addition pathways are more preferable than H-abstraction pathways in gas phase, while that is opposite in heterogeneous phase. At 298 K, the overall rate coefficients of the title reactions in gas and heterogeneous phases are 3.48 × 10-13 and 2.37 × 10-13 cm3 molecule-1 s-1 with half-lives of 55.3 h and 81.2 h, respectively. The strong H-bonds between linear Si3O2(OH)8 and 2-CPs change the energy barriers of initial •OH-addition and H-abstraction reactions, resulting in the competition between heterogeneous reactions and gas phase reactions. The products in heterogeneous reactions are chloroquinone and HONO, which can cause atmospheric acid deposition and eco-toxicity. In gas phase, self-cyclization of alkoxy radical (RO•) leads to formation of •HO2 and highly­oxygenated molecules, which cause formation of secondary organic aerosol. It is emphasized that oxidation of 2-CPs by •OH leads to formation of more toxic products for aquatic organisms. Therefore, more attention should be focused on the products originated from •OH-initiated reactions of (2-)CPs in gaseous and heterogeneous reactions.


Asunto(s)
Clorofenoles , Radical Hidroxilo , Clorofenoles/toxicidad , Semivida , Cinética
19.
Autophagy ; 18(2): 357-374, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34190023

RESUMEN

Hepatitis B virus (HBV) particles are thought to be secreted from hepatocytes through multivesicular bodies (MVBs); however, the cellular trafficking mechanisms prior to this process remain elusive. It has been reported that CCDC88A/GIV expression, which is involved in multiple aspects of vesicular trafficking, changes dynamically at different phases of chronic HBV infection. In this study, we focused on the role of CCDC88A/GIV in HBV replication. In the liver tissues of chronically HBV-infected patients, HBV infection significantly enhanced CCDC88A/GIV expression, and increased endoplasmic reticulum (ER) stress and autophagosome formation without changing endosome formation. Additionally, colocalization of SHBsAg with early endosomes (~30.2%) far exceeded that with autophagosomes (~3.2%). In hepatoma cells, CCDC88A/GIV and its downstream proteins, DNM2 (dynamin 2; a CCDC88A/GIV effector), CLTC and RAB5A significantly enhanced HBV replication and endosome formation but inhibited autophagosome formation. Blocking endocytosis disrupted HBsAg trafficking to endosomes and caused its accumulation in the ER lumen, which triggered ER stress to initiate the unfolded protein response (UPR). Therefore, HBsAg trafficking into autophagosomes was increased, and the lysosomal activity and maturation, which was inhibited by HBV infection, were restored. Meanwhile, core particles were prevented from entering MVBs. CCDC88A/GIV and its other effector, GNAI3, decreased autophagic flux by enhancing the insulin-induced AKT-MTOR pathway, thereby inhibiting HBV antigens autophagic degradation. In conclusion, CCDC88A/GIV enhanced HBV replication by increasing endosomal trafficking and reducing autophagic degradation of HBV antigens, suggesting that CCDC88A/GIV-mediated endosomal trafficking plays an important role in HBV replication and progeny secretion.Abbreviations: ACTB: actin beta; AO: acridine orange; ATF6: activating transcription factor 6; CCDC88A/GIV: coiled-coil domain containing 88A; CLTC: clathrin heavy chain; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; DNM2: dynamin 2; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; EIF2A: eukaryotic translation initiation factor 2A; FBS: fetal bovine serum; GNAI3: G protein subunit alpha i3; HBV: hepatitis B virus; HBV RIs: HBV replication intermediates; HBcAg: HBV core protein; HBsAg: HBV surface antigen; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MVBs: multivesicular bodies; MTOR: mechanistic target of rapamycin kinase; PDI: protein disulfide isomerase; PHH: primary human hepatocyte; pSM2: a HBV replication-competent plasmid; HSPA5/BIP: heat shock protein family A (Hsp70) member 5; SQSTM1/p62: sequestosome 1; siRNA: small interfering RNA; SEM: standard error of the mean; UPR: unfolded protein response.


Asunto(s)
Autofagia , Virus de la Hepatitis B , Autofagia/fisiología , Dinamina II , Endosomas/metabolismo , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Humanos , Proteínas de Microfilamentos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Transporte Vesicular
20.
Mater Horiz ; 8(12): 3457-3467, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34755162

RESUMEN

The production of reactive oxygen species (ROS) to elicit lethal cellular oxidative damage is an attractive pathway to kill cancer cells, but it is still hindered by the low ROS production efficiency of the current methods. Herein, we design a one-dimensional (1D) π-π conjugated ferriporphyrin covalent organic framework on carbon nanotubes (COF-CNT) for activating nanocatalytic and photodynamic cancer therapy. The COF-CNT can catalyze the generation of ROS and O2 in the tumor microenvironment (TME), and realize a self-oxygen-supplying PDT under near-infrared (NIR) light irradiation, simultaneously. With the full electron delocalization at the atomically dispersed active center, the catalytic activity of COF-CNT with extended π-conjugation is 6.8 times higher than that without the π-conjugated structure. The formation of the COF structure with π-π conjugation also changes the density of states (DOS) profile of its functional building block for improving PDT. Through one single treatment, it successfully achieves complete tumor regression of 4T1 breast carcinoma in mice with immunoregulation.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Nanotubos de Carbono , Neoplasias , Fotoquimioterapia , Animales , Estructuras Metalorgánicas/química , Ratones , Nanopartículas/química , Neoplasias/terapia , Fotoquimioterapia/métodos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA