Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Brain Behav Immun ; 120: 121-140, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777288

RESUMEN

BACKGROUND: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.

2.
Int J Nanomedicine ; 19: 3737-3751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699684

RESUMEN

Background: Chemo-photodynamic combination therapy has demonstrated significant potential in the treatment of cancer. Triptolide (TPL), a naturally derived anticancer agent, when combined with the photosensitizer Chlorin e6 (Ce6), has shown to provide enhanced anti-tumor benefits. However, the development of stimuli-responsive nanovehicles for the co-delivery of TPL and Ce6 could further enhance the efficacy of this combination therapy. Methods: In this study, we synthesized a pH/ROS dual-responsive mPEG-TK-PBAE copolymer, which contains a pH-sensitive PBAE moiety and a ROS-sensitive thioketal (TK) linkage. Through a self-assembly process, TPL and Ce6 were successfully co-loaded into mPEG-TK-PBAE nanoparticles, hereafter referred to as TPL/Ce6 NPs. We evaluated the pH- and ROS-sensitive drug release and particle size changes. Furthermore, we investigated both the in vitro suppression of cellular proliferation and induction of apoptosis in HepG2 cells, as well as the in vivo anti-tumor efficacy of TPL/Ce6 NPs in H22 xenograft nude mice. Results: The mPEG-TK-PBAE copolymer was synthesized through a one-pot Michael-addition reaction and successfully co-encapsulated both TPL and Ce6 by self-assembly. Upon exposure to acid pH values and high ROS levels, the payloads in TPL/Ce6 NPs were rapidly released. Notably, the abundant ROS generated by the released Ce6 under laser irradiation further accelerated the degradation of the nanosystem, thereby amplifying the tumor microenvironment-responsive drug release and enhancing anticancer efficacy. Consequently, TPL/Ce6 NPs significantly increased PDT-induced oxidative stress and augmented TPL-induced apoptosis in HepG2 cells, leading to synergistic anticancer effects in vitro. Moreover, administering TPL/Ce6 NPs (containing 0.3 mg/kg of TPL and 4 mg/kg of Ce6) seven times, accompanied by 650 nm laser irradiation, efficiently inhibited tumor growth in H22 tumor-bearing mice, while exhibiting lower systemic toxicity. Conclusion: Overall, we have developed a tumor microenvironment-responsive nanosystem for the co-delivery of TPL and Ce6, demonstrating amplified synergistic effects of chemo-photodynamic therapy (chemo-PDT) for hepatocellular carcinoma (HCC) treatment.


Asunto(s)
Apoptosis , Clorofilidas , Diterpenos , Neoplasias Hepáticas , Ratones Desnudos , Fenantrenos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Especies Reactivas de Oxígeno , Animales , Humanos , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Células Hep G2 , Neoplasias Hepáticas/tratamiento farmacológico , Porfirinas/química , Porfirinas/farmacología , Porfirinas/administración & dosificación , Porfirinas/farmacocinética , Diterpenos/química , Diterpenos/farmacología , Diterpenos/farmacocinética , Diterpenos/administración & dosificación , Concentración de Iones de Hidrógeno , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Apoptosis/efectos de los fármacos , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Compuestos Epoxi/química , Compuestos Epoxi/farmacología , Compuestos Epoxi/administración & dosificación , Nanopartículas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Liberación de Fármacos , Proliferación Celular/efectos de los fármacos , Polietilenglicoles/química , Terapia Combinada
3.
Food Funct ; 15(10): 5485-5495, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38690748

RESUMEN

Ginsenoside Rk1, one kind of ginsenoside, is a minor ginsenoside found in Panax ginseng and used as traditional Chinese medicine for centuries. It exhibits anti-tumor and anti-aggregation effects. However, little research has been done on its effect on endothelial function. This study investigated whether ginsenoside Rk1 improved endothelial dysfunction in diabetes and the underlying mechanisms in vivo and in vitro. Male C57BL/6 mice were fed with a 12 week high-fat diet (60% kcal % fat), whereas treatment groups were orally administered with ginsenoside Rk1 (10 and 20 mg per kg per day) in the last 4 weeks. Aortas isolated from C57BL/6 mice were induced by high glucose (HG; 30 mM) and co-treated with or without ginsenoside Rk1 (1 and 10 µM) for 48 h ex vivo. Moreover, primary rat aortic endothelial cells (RAECs) were cultured and stimulated by HG (44 mM) to mimic hyperglycemia, with or without the co-treatment of ginsenoside Rk1 (10 µM) for 48 h. Endothelium-dependent relaxations of mouse aortas were damaged with elevated oxidative stress and downregulation of three isoforms of peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-ß/δ, and PPAR-γ, as well as endothelial nitric oxide synthase (eNOS) phosphorylation due to HG or high-fat diet stimulation, which also existed in RAECs. However, after the treatment with ginsenoside Rk1, these impairments were all ameliorated significantly. Moreover, the vaso-protective and anti-oxidative effects of ginsenoside Rk1 were abolished by PPAR antagonists (GSK0660, GW9662 or GW6471). In conclusion, this study reveals that ginsenoside Rk1 ameliorates endothelial dysfunction and suppresses oxidative stress in diabetic vasculature through activating the PPAR/eNOS pathway.


Asunto(s)
Endotelio Vascular , Ginsenósidos , Ratones Endogámicos C57BL , Receptores Activados del Proliferador del Peroxisoma , Ginsenósidos/farmacología , Animales , Masculino , Ratones , Ratas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Aorta/efectos de los fármacos , Aorta/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Panax/química , Dieta Alta en Grasa
4.
Am J Chin Med ; : 1-17, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798150

RESUMEN

Hyperglycemia induces chronic stresses, such as oxidative stress and endoplasmic reticulum (ER) stress, which can result in [Formula: see text]-cell dysfunction and development of Type 2 Diabetes Mellitus (T2DM). Ginsenoside Rk1 is a minor ginsenoside isolated from Ginseng. It has been shown to exert anti-cancer, anti-inflammatory, anti-oxidant, and neuroprotective effects; however, its effects on pancreatic cells in T2DM have never been studied. This study aims to examine the novel effects of Ginsenoside Rk1 on ER stress-induced apoptosis in a pancreatic [Formula: see text]-cell line MIN6 and HFD-induced diabetic pancreas, and their underlying mechanisms. We demonstrated that Ginsenoside Rk1 alleviated ER stress-induced apoptosis in MIN6 cells, which was accomplished by directly targeting and activating insulin-like growth factor 1 receptor (IGF-1R), thus activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/Bcl-2-associated agonist of cell death (Bad)-B-cell lymphoma-2 (Bcl-2) pathway. This pathway was also confirmed in an HFD-induced diabetic pancreas. Meanwhile, the use of the IGF-1R inhibitor PQ401 abolished this anti-apoptotic effect, confirming the role of IGF-1R in mediating anti-apoptosis effects exerted by Ginsenoside Rk1. Besides, Ginsenoside Rk1 reduced pancreas weights and increased pancreatic insulin contents, suggesting that it could protect the pancreas from HFD-induced diabetes. Taken together, our study provided novel protective effects of Ginsenoside Rk1 on ER stress-induced [Formula: see text]-cell apoptosis and HFD-induced diabetic pancreases, as well as its direct target with IGF-1R, indicating that Ginsenoside Rk1 could be a potential drug for the treatment of T2DM.

5.
Heliyon ; 10(7): e28242, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601669

RESUMEN

Introduction: The close association between cuproptosis and tumor immunity in triple-negative breast cancer (TNBC) allows its monitoring for predicting the prognosis of patients with TNBC. Nevertheless, the biological function and prognostic value of cuproptosis-related miRNAs and their target genes have not been reported. Purpose: To construct the miRNA and mRNA-based risk models associated with cuproptosis for patients with TNBC. Methods: Comparison of expression levels for genes associated with cuproptosis was executed between patients in the normal individuals and the TCGA-TNBC cohort. Conducting differential analysis resulted in the identification of differentially expressed miRNA (DE-miRNAs) and differentially expressed genes (DEGs) between the TNBC and Control samples. Screening for prognostic miRNAs and biomarkers involved employing univariate Cox analysis and least absolute shrinkage and selection operator regression analyses. These methods were utilized to construct risk models aimed at predicting the survival of patients with TNBC. Based on the median value of risk scores, patients were then stratified into low- and high-risk groups. Functional enrichment analysis was employed to explore the potential function and pathways of prognostic genes. Additionally, independent prognostic analysis was performed through univariate and multivariate Cox regression. Immune infiltration analysis was performed to examine disparities in the infiltration of immune cells between the two risk groups. Finally, the prognostic gene expression was mined in key cell types of TNBC. Results: We obtained 5213 DEGs and 204 DE-miRNAs related to cuproptosis between TNBC and Control samples. Five prognostic miRNAs (miR-203a-3p, miR-1277-3p, miR-135b-5p, miR-200c-3p, and miR-592) and three biomarkers (DENND5B, IGF1R, and MEF2C) were closely associated with TNBC. Significant differences in the functions of prognostic genes between the two risk groups were observed, encompassing adipogenesis, inflammatory response, and hormone metabolic process. The prognostic gene regulatory network revealed that miR200C-3p regulated ZFPM2 and CFL2, and miR-1277-3p regulated BMP2 and RORA. A nomogram was created based on riskScore, cancer status, and pathologic stage to predict 1/3/5-year survival of patients with TNBC. Immune infiltration analysis indicated that the immune microenvironment may be associated with the progression of TNBC. Interestingly, prognostic genes exhibited higher expression levels in T cells, fibroblasts, endothelial cells, and monocytes compared to other cells. Conclusions: Five prognostic miRNA (miR-203a-3p, miR-1277-3p, miR-135b-5p, miR-200c-3p, and miR-592) and three biomarkers (DENND5B, IGF1R, and MEF2C) were significantly associated with TNBC, it provides new therapeutic targets for the treatment and prognosis of TNBC.

6.
Chem Biodivers ; 21(4): e202301972, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342761

RESUMEN

Heterotopic bone occurs after burns, trauma and major orthopedic surgery, which cannot be completely cured by current treatments. The development of new treatments requires more in-depth research into the mechanism of HO. Available evidence suggests that miR-21-5p plays an important role in bone formation. However, its mechanism in traumatic HO is still unclear. First, we identified exosomes extracted from L6 cells using TEM observation of the structure and western blotting detection of the surface marker CD63. Regulation effect of HIF-1α to miR-21-5p was confirmed by q-PCR assay. Then we co-cultured L6 cells with ASCs and performed alizarin red staining and ALP detection. Overexpression of miR-21-5p upregulated BMP4, p-smad1/5/8, OCN and OPN, which suggests the BMP4-smad signaling pathway may be involved in miR-21-5p regulation of osteogenic differentiation of ASCs. Finally in vivo experiments showed that miR-21-5p exosomes promoted ectopic formation in traumatized mice. This study confirms that HIF-1α could modulate miR-21-5p exosomes to promote post-traumatic ectopic bone formation by inducing ASCs cell differentiation. Our study reveals the mechanisms of miR-21-5p in ectopic ossification formation after trauma.


Asunto(s)
Exosomas , MicroARNs , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis , Exosomas/metabolismo , Diferenciación Celular , Células Cultivadas
7.
ACS Nano ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294834

RESUMEN

Acute liver failure (ALF) is a rare and serious condition characterized by major hepatocyte death and liver dysfunction. Owing to the limited therapeutic options, this disease generally has a poor prognosis and a high mortality rate. When ALF cannot be reversed by medications, liver transplantation is often needed. However, transplant rejection and the shortage of donor organs still remain major challenges. Most recently, stem cell therapy has emerged as a promising alternative for the treatment of liver diseases. However, the limited cell delivery routes and poor stability of live cell products have greatly hindered the feasibility and therapeutic efficacy of stem cell therapy. Inspired by the functions of mesenchymal stem cells (MSCs) primarily through the secretion of several factors, we developed an MSC-inspired biomimetic multifunctional nanoframework (MBN) that encapsulates the growth-promoting factors secreted by MSCs via combination with hydrophilic or hydrophobic drugs. The red blood cell (RBC) membrane was coated with the MBN to enhance its immunological tolerance and prolong its circulation time in blood. Importantly, the MBN can respond to the oxidative microenvironment, where it accumulates and degrades to release the payload. In this work, two biomimetic nanoparticles, namely, rhein-encapsulated MBN (RMBN) and N-acetylcysteine (NAC)-encapsulated MBN (NMBN), were designed and synthesized. In lipopolysaccharide (LPS)/d-galactosamine (D-GalN)-induced and acetaminophen (APAP)-induced ALF mouse models, RMBN and NMBN could effectively target liver lesions, relieve the acute symptoms of ALF, and promote liver cell regeneration by virtue of their strong antioxidative, anti-inflammatory, and regenerative activities. This study demonstrated the feasibility of the use of an MSC-inspired biomimetic nanoframework for treating ALF.

8.
Biochim Biophys Acta Gene Regul Mech ; 1867(1): 195005, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242428

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.


Asunto(s)
Complejos Multiproteicos , Serina-Treonina Quinasas TOR , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Serina-Treonina Quinasas TOR/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Transducción de Señal , Expresión Génica
9.
Aging Dis ; 15(2): 640-697, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450923

RESUMEN

Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.


Asunto(s)
Productos Biológicos , Neoplasias , Animales , Humanos , Genes myc , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/genética , Productos Biológicos/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Transducción de Señal , Neoplasias/tratamiento farmacológico
10.
J Gene Med ; 26(1): e3617, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37935422

RESUMEN

OBJECTIVE: Erxian Decoction (EXD) is traditionally employed in the treatment of menopausal syndromes, although its underlying mechanisms remain largely undefined. Given that the senescence of bone marrow mesenchymal stem cells (BMSCs) is intertwined with organismal aging and associated diseases, this study endeavored to elucidate the influence of EXD on aging BMSCs and uncover the mechanisms through which EXD impedes BMSC senescence. METHODS: Initially, we probed the anti-senescent mechanisms of EXD on BMSCs via network pharmacology. We subsequently isolated and identified exosomes from the serum of EXD-fed rats (EXD-Exos) and administered these to H2 O2 -induced aging BMSC. Assays were conducted to assess BMSC senescence indicators and markers pertinent to mitochondrial autophagy. Treatments with mitophagy inhibitors and activators were then employed to substantiate our findings. RESULTS: Protein-protein interaction (PPI) network analyses spotlighted AKT1, TP53, TNF, JUN, VEGFA, IL6, CASP3 and EGFR as focal targets. Gene Ontology and Kyoto Encylcopedia of Genes and Genomes pathway analyses underscored oxidative stress, mitophagy and cell proliferation as pivotal processes. Our cellular assays ascertained that EXD-Exos mitigated H2 O2 -induced senescence phenotypes in BMSCs. Moreover, EXD-Exos ameliorated disrupted mitophagy in BMSCs, as evidenced by enhanced cellular membrane potential and diminished reactive oxygen species levels. Intriguingly, EXD-Exos also preserved the osteogenic differentiation potential of BMSCs while curtailing their adipogenic propensity. CONCLUSION: Our findings compellingly suggest that EXD counteracts BMSC senescence by fostering mitophagy.


Asunto(s)
Disulfuros , Medicamentos Herbarios Chinos , Exosomas , Células Madre Mesenquimatosas , Tionas , Ratas , Animales , Osteogénesis , Mitofagia , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo
11.
J Adv Res ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056775

RESUMEN

BACKGROUND: Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW: This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.

12.
EMBO Mol Med ; 15(12): e17815, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37994307

RESUMEN

Efficient clearance of dying cells (efferocytosis) is an evolutionarily conserved process for tissue homeostasis. Genetic enhancement of efferocytosis exhibits therapeutic potential for inflammation resolution and tissue repair. However, pharmacological approaches to enhance efferocytosis remain sparse due to a lack of targets for modulation. Here, we report the identification of columbamine (COL) which enhances macrophage-mediated efferocytosis and attenuates intestinal inflammation in a murine colitis model. COL enhances efferocytosis by promoting LC3-associated phagocytosis (LAP), a non-canonical form of autophagy. Transcriptome analysis and pharmacological characterization revealed that COL is a biased agonist that occupies a part of the ligand binding pocket of formyl peptide receptor 2 (FPR2), a G-protein coupled receptor involved in inflammation regulation. Genetic ablation of the Fpr2 gene or treatment with an FPR2 antagonist abolishes COL-induced efferocytosis, anti-colitis activity and LAP. Taken together, our study identifies FPR2 as a potential target for modulating LC3-associated efferocytosis to alleviate intestinal inflammation and highlights the therapeutic value of COL, a natural and biased agonist of FPR2, in the treatment of inflammatory bowel disease.


Asunto(s)
Colitis , Ratones , Animales , Fagocitosis , Transducción de Señal , Inflamación/genética , Macrófagos/metabolismo , Colitis/metabolismo
13.
Genes Dis ; 10(1): 212-227, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37013060

RESUMEN

Nasopharyngeal carcinoma (NPC) is a common malignant carcinoma of the head and neck, and the biological mechanisms underlying the pathogenesis of NPC remain not fully understood. In the present study, we systematically analyzed four independent NPC transcriptomic datasets and focused on identifying the critical molecular networks and novel key hub genes implicated in NPC. We found totally 170 common overlapping differentially expressed genes (DEGs) in the four NPC datasets. GO and KEGG pathway analysis revealed that cell cycle dysregulation is a critical event in NPC. Protein-protein interaction (PPI) network analysis identified a 15 hub-gene core network with overexpressed kinesin family member 2C (KIF2C) as a central regulator. Loss-of-function study demonstrated that knockdown of KIF2C significantly inhibited cell growth and cell motility, and delayed cell cycle progression, accompanied with dramatic mitotic defects in spindle formation in NPC cells. RNA-seq analysis revealed that KIF2C knockdown led to deregulation of various downstream genes. KIF2C could also regulate the AKT/mTOR pathways, and enhance paclitaxel sensitivity in NPC cells. Taken together, our results suggest that cell cycle dysregulation is a critical event during NPC pathogenesis and KIF2C is a novel key mitotic hub gene with therapeutic potential in NPC.

14.
Phytomedicine ; 113: 154718, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36854203

RESUMEN

BACKGROUND: Ophiopogon japonicus (Thunb.) Ker Gawl., a well-known Chinese herb, has been used in traditional Chinese medicine for thousands of years. Extensive in vitro and in vivo studies have shown that O. japonicus and its active compounds exhibit potential anticancer effects in a variety of cancer cells in vitro and suppress tumor growth and metastasis without causing serious toxicity in vivo. PURPOSE: This review aims to systemically summarize and discuss the anticancer effects and the underlying mechanisms of O. japonicus extracts and its active compounds. METHODS: The review is prepared following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Various scientific databases including Web of Science, PubMed, Scopus, and Chinese National Knowledge Infrastructure were searched using the keywords: Ophiopogon japonicus, tumor, cancer, carcinoma, content, pharmacokinetics, and toxicity. RESULTS: O. japonicus extracts and the active compounds, such as ruscogenin-1-O-[ß-d-glucopyranosyl(1→2)][ß-d-xylopyranosyl(1→3)]-ß-d-fucopyranoside (DT-13), ophiopogonin B, and ophiopogonin D, exert potential anticancer effects, including the induction of cell cycle arrest, activation of apoptosis and autophagy, and inhibition of metastasis and angiogenesis. In addition, the mechanisms underlying these effects, as well as the pharmacokinetics, toxicity and clinical utility of O. japonicus extracts and active compounds are discussed. Furthermore, this review highlights the research and application prospects of these compounds in immunotherapy and combination chemotherapy. CONCLUSIONS: The traditional herb O. japonicus and its phytochemicals could be safe and reliable anticancer drug candidates, alone or in combination with chemotherapeutic drugs. We hope that this review, which highlights the anticancer properties of O. japonicus, will contribute to drug optimization, therapeutic development, and future studies on cancer therapies based on this medicinal plant.


Asunto(s)
Medicamentos Herbarios Chinos , Ophiopogon , Medicamentos Herbarios Chinos/química , Ophiopogon/química , Medicina Tradicional China , Fitoquímicos
15.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770712

RESUMEN

The tuberous root of Ophiopogon japonicus (Thunb.) Ker-Gawl. is a well-known Chinese medicine also called Maidong (MD) in Chinese. It could be divided into "Chuanmaidong" (CMD) and "Zhemaidong" (ZMD), according to the geographic origins. Meanwhile, the root of Liriope spicata (Thunb.) Lour. var. prolifera Y. T. Ma (SMD) is occasionally used as a substitute for MD in the market. In this study, a reliable pressurized liquid extraction and HPLC-DAD-ELSD method was developed for the simultaneous determination of nine chemical components, including four steroidal saponins (ophiopojaponin C, ophiopogonin D, liriopesides B and ophiopogonin D'), four homoisoflavonoids (methylophiopogonone A, methylophiopogonone B, methylophiopogonanone A and methylophiopogonanone B) and one sapogenin (ruscogenin) in CMD, ZMD and SMD. The method was validated in terms of linearity, sensitivity, precision, repeatability and accuracy, and then applied to the real samples from different origins. The results indicated that there were significant differences in the contents of the investigated compounds in CMD, ZMD and SMD. Ruscogenin was not detected in all the samples, and liriopesides B was only found in SMD samples. CMD contained higher ophiopogonin D and ophiopogonin D', while the other compounds were more abundant in ZMD. Moreover, the anticancer effects of the herbal extracts and selected components against A2780 human ovarian cancer cells were also compared. CMD and ZMD showed similar cytotoxic effects, which were stronger than those of SMD. The effects of MD may be due to the significant anticancer potential of ophiopognin D' and homoisoflavonoids. These results suggested that there were great differences in the chemical composition and pharmacological activity among CMD, ZMD and SMD; thus, their origins should be carefully considered in clinical application.


Asunto(s)
Medicamentos Herbarios Chinos , Ophiopogon , Neoplasias Ováricas , Saponinas , Compuestos de Espiro , Humanos , Femenino , Ophiopogon/química , Línea Celular Tumoral , Saponinas/farmacología , Saponinas/química , Medicamentos Herbarios Chinos/química
16.
Molecules ; 28(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677797

RESUMEN

Breast cancer is a common cancer in women worldwide. The existing clinical treatment strategies have been able to limit the progression of breast cancer and cancer metastasis, but abnormal metabolism, immunosuppression, and multidrug resistance involving multiple regulators remain the major challenges for the treatment of breast cancer. Adenosine 5'-monophosphate (AMP)-Activated Protein Kinase (AMPK) can regulate metabolic reprogramming and reverse the "Warburg effect" via multiple metabolic signaling pathways in breast cancer. Previous studies suggest that the activation of AMPK suppresses the growth and metastasis of breast cancer cells, as well as stimulating the responses of immune cells. However, some other reports claim that the development and poor prognosis of breast cancer are related to the overexpression and aberrant activation of AMPK. Thus, the role of AMPK in the progression of breast cancer is still controversial. In this review, we summarize the current understanding of AMPK, particularly the comprehensive bidirectional functions of AMPK in cancer progression; discuss the pharmacological activators of AMPK and some specific molecules, including the natural products (including berberine, curcumin, (-)-epigallocatechin-3-gallate, ginsenosides, and paclitaxel) that influence the efficacy of these activators in cancer therapy; and elaborate the role of AMPK as a potential therapeutic target for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Mama , Transducción de Señal , Extractos Vegetales/uso terapéutico
17.
J Ethnopharmacol ; 303: 115961, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442757

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu Decoction (HLJDD) is a traditional heat-dissipating and detoxicating prescription used in Chinese medicine and has been extensively applied in the clinical treatment of ischemic stroke. Preliminary research confirmed that HLJDD exerts a neuroprotective effect on brain tissue injury caused by cerebral ischemia by promoting angiogenesis. However, the components of HLJDD responsible for its medicinal activity in ischemic injury remain unclear. AIM OF THE STUDY: The aim of this study was to identify the active components of HLJDD that could promote angiogenesis and investigate its underlying mechanism, as well as Hypoxia-inducible factor-1α (HIF-1α)/Vascular endothelial growth factor (VEGF) signalings in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS: The specific binding components of HLJDD with HUVECs were isolated and identified through a combination of live cell biospecific extraction, solid-phase extraction, and ultra performance liquid chromatography (UPLC)-Orbitrap Fusion Tribrid mass spectrometry (MS). Their pharmacological activity against oxygen-glucose deprivation-reperfusion (OGD/R) injury and in vitro pro-angiogenesis was validated using Cell Counting Kit-8 (CCK-8) and tube formation analysis, respectively. Finally, we explored the effect of active ingredients on the expression levels of HIF-1α and VEGF using enzyme-linked immunosorbent assay. Molecular docking was used to predict the potential binding of six active components to phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (AKT) and Von Hippel-Lindau (VHL) proteins, which are involved in the regulation of HIF-1α and are highly associated with angiogenesis. RESULTS: A total of 13 HUVECs-specific HLJDD components were identified, and 10 of them were shown to protect against OGD/R injury. We were the first to demonstrate that two of these components have a protective role in OGD/R-induced HUVECs injury. Additionally, seven of these 10 components exhibited angiogenesis-promoting activity, and two of these components were shown, for the first time, to promote angiogenesis in HUVECs. These effects might occur through the HIF-1α/VEGF pathway. Molecular docking results showed that all six active ingredients could stably bind to PI3K and AKT proteins, suggesting that these two proteins may be potential targets for six active ingredients. CONCLUSIONS: The approach employed in this study effectively identified proangiogenic components in HLJDD that might act via PI3K/AKT/HIF-1α/VEGF pathways and other mechanisms involved in angiogenesis. In conclusion, this study was the first to demonstrate four compounds with new bioactivities and could also provide insight into the isolation and discovery of new bioactive compounds existing in Chinese medicine with potential clinical value.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas c-akt , Simulación del Acoplamiento Molecular , Proteínas Serina-Treonina Quinasas , Factores de Crecimiento Endotelial Vascular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia
18.
Front Immunol ; 13: 965342, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389835

RESUMEN

Background: Due to lack of enough specific targets and the immunosuppressive tumor microenvironment (TME) of triple-negative breast cancer (TNBC), TNBC patients often cannot benefit from a single treatment option. This study aims to explore the regulatory effects of Compound kushen injection (CKI) plus chemotherapy on the TME of TNBC from a single cell level. Methods: A mouse TNBC model in BALB/c mice was established to evaluate the antitumor efficacy and toxicity of CKI combined with chemotherapy. Flow cytometry was used to observe the influence of CKI on the lymphocyte populations in the tumor bearing mice. Both bulk RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) were applied to portray the modulation of CKI combined with chemotherapy on the TME of TNBC mice. Results: CKI significantly enhanced the anticancer activity of chemotherapy in vivo with no obvious side effects. Flow cytometry results revealed a significantly higher activation of CD8+ T lymphocytes in the spleens and tumors of the mice with combination therapy. Bulk RNA-seq indicated that CKI could promote the cytotoxic immune cell infiltrating into tumor tissues. Meanwhile, scRNA-seq further revealed that CKI combined with chemotherapy could enhance the percentage of tumor-infiltrating CD8+ T cells, inhibit tumor-promoting signaling pathways, and promote T cell activation and positive regulation of immune response. In addition, CKI showed obvious anticancer activity against MDA-MB-231 breast tumor cells in vitro. Conclusions: The combination of CKI and chemotherapy might provide a higher efficiency and lower toxicity strategy than a single chemotherapy drug for TNBC. CKI potentiates the anti-TNBC effects of chemotherapy by activating anti-tumor immune response in mice.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Linfocitos T CD8-positivos/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , ARN , Microambiente Tumoral
19.
Front Pharmacol ; 13: 1017830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188550

RESUMEN

Ophiopogon japonicus (OJ) is a traditional Chinese herbal medicine that has been used for thousands of years. Recently, the anticancer effects of OJ have been reported in multiple types of cancer, particularly in lung cancer. However, the underlying mechanisms remain unclear. In present study, the effects of OJ against NCI-H1299 human lung cancer cells were investigated, and the underlying mechanisms were explored using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS)-based cell metabolomics. As a result, OJ inhibited the proliferation, induced the apoptosis and suppressed the migration of NCI-H1299 cells. A total of 22 differential metabolites responsible for the effects of OJ were screened and annotated based on the LC-MS-based cell metabolomics approach. The altered metabolites were involved in three metabolic pathways, including glycerophospholipid metabolism, ether lipid metabolism and glutathione metabolism. These results showed that cell metabolomics-based strategies are promising tools to discover the action mechanisms of OJ against lung cancer cells.

20.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292919

RESUMEN

Jatrorrhizine (JAT) is one of the major bioactive protoberberine alkaloids found in rhizoma coptidis, which has hypoglycemic and hypolipidemic potential. This study aimed to evaluate the vasoprotective effects of JAT in diabetes and obesity and the underlying mechanism involved. Mouse aortas, carotid arteries and human umbilical cord vein endothelial cells (HUVECs) were treated with risk factors (high glucose or tunicamycin) with and without JAT ex vivo and in vitro. Furthermore, aortas were obtained from mice with chronic treatment: (1) control; (2) diet-induced obese (DIO) mice fed a high-fat diet (45% kcal% fat) for 15 weeks; and (3) DIO mice orally administered JAT at 50 mg/kg/day for the last 5 weeks. High glucose or endoplasmic reticulum (ER) stress inducer tunicamycin impaired acetylcholine-induced endothelium-dependent relaxations (EDRs) in mouse aortas, induced oxidative stress in carotid arteries and HUVECs, downregulated phosphorylations of Akt at Ser473 and eNOS at Ser1177 and enhanced ER stress in mouse aortas and HUVECs, and these impairments were reversed by cotreatment with JAT. JAT increased NO release in high-glucose-treated mouse aortas and HUVECs. In addition, chronic JAT treatment restored endothelial function with EDRs comparable to the control, increased Akt/eNOS phosphorylation, and attenuated ER stress and oxidative stress in aortas from DIO mice. Blood pressure, glucose sensitivity, fatty liver and its morphological change, as well as plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and plasma lipid profile, were also normalized by JAT treatment. Collectively, our data may be the first to reveal the vasoprotective effect of JAT that ameliorates endothelial dysfunction in diabetes and obesity through enhancement of the Akt/eNOS pathway and NO bioavailability, as well as suppression of ER stress and oxidative stress.


Asunto(s)
Diabetes Mellitus , Medicamentos Herbarios Chinos , Ratones , Humanos , Animales , Estrés del Retículo Endoplásmico , Tunicamicina/farmacología , Endotelio Vascular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Acetilcolina/metabolismo , Alanina Transaminasa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ratones Endogámicos C57BL , Diabetes Mellitus/metabolismo , Estrés Oxidativo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Aspartato Aminotransferasas/metabolismo , Lípidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA