Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Mol Carcinog ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804704

RESUMEN

Gastric cancer (GC) exhibits significant heterogeneity and its prognosis remains dismal. Therefore, it is essential to investigate new approaches for diagnosing and treating GC. Desmosome proteins are crucial for the advancement and growth of cancer. Plakophilin-2 (PKP2), a member of the desmosome protein family, frequently exhibits aberrant expression and is strongly associated with many tumor types' progression. In this study, we found upregulation of PKP2 in GC. Further correlation analysis showed a notable association between increased PKP2 expression and both tumor stage and poor prognosis in individuals diagnosed with gastric adenocarcinoma. In addition, our research revealed that the Yes-associated protein1 (YAP1)/TEAD4 complex could stimulate the transcriptional expression of PKP2 in GC. Elevated PKP2 levels facilitate activation of the AKT/mammalian target of rapamycin signaling pathway, thereby promoting the malignant progression of GC. By constructing a mouse model, we ultimately validated the molecular mechanism and function of PKP2 in GC. Taken together, these discoveries suggest that PKP2, as a direct gene target of YAP/TEAD4 regulation, has the potential to be used as an indication of GC progression and prognosis. PKP2 is expected to be a promising therapeutic target for GC.

2.
Heliyon ; 10(7): e27739, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560164

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease, with a range of conditions including non-alcoholic fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Currently recognized as the liver component of the metabolic syndrome, NAFLD is intimately linked to metabolic diseases. Angiopoietin-like proteins (ANGPTLs) comprise a class of proteins that resemble angiopoietins structurally. It is closely related to obesity, insulin resistance and lipid metabolism, and may be the critical factor of metabolic syndrome. In recent years, many studies have found that there is a certain correlation between ANGPTLs and the occurrence and progression of NAFLD disease spectrum. This article reviews the possible mechanisms and roles of ANGPTL protein in the pathogenesis and progression of NAFLD.

3.
Arch Toxicol ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602537

RESUMEN

Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.

4.
Cancer Sci ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676428

RESUMEN

GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6-methyladenosine (m6A) activation mechanism of the Helicobacter pylori/FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.

5.
Oncogene ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622203

RESUMEN

Childhood onset of colorectal signet-ring cell carcinoma (CR-SRCC) is extremely rare and featured as highly malignant with poor prognosis. Here we reported a CR-SRCC case of 11-year-old boy with a novel inherited X-linked KDM6AA694T mutation. The H3K27me3 demethylase KDM6A was frequently mutated in varieties of tumors and acts as a tumor suppressor. In vivo H3K27me3 demethylation assay demonstrated that KDM6AA694T had dampened H3K27me3 demethylase activity. Overexpression of KDM6AA694T in SRCC cell line KATO3 promoted cell proliferation, invasion and migration, which were further confirmed in vivo by constructing orthotopic tumor growth and lung metastasis model. Besides, expression of KDM6AA694T in immune cells suppresses inflammatory macrophage response and effector T cell response. In conclusion, we characterized a novel inherited KDM6AA694T mutant from a childhood-onset SRCC case and demonstrated that the mutant with impaired H3K27me3 demethylase activity could potentiate tumor malignancy and suppress antitumor immunity.

6.
Biomed Pharmacother ; 174: 116574, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593706

RESUMEN

Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.


Asunto(s)
Muerte Celular , Neoplasias Gastrointestinales , Metales , Humanos , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/tratamiento farmacológico , Animales , Muerte Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Iones/metabolismo , Antineoplásicos/farmacología
7.
J Agric Food Chem ; 72(12): 6178-6188, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483540

RESUMEN

Ferroptosis holds great potential as a therapeutic approach for gastric cancer (GC), a prevalent and deadly malignant tumor associated with high rates of incidence and mortality. Myricetin, well-known for its multifaceted biomedical attributes, particularly its anticancer properties, has yet to be thoroughly investigated regarding its involvement in ferroptosis. The aim of this research was to elucidate the impact of myricetin on ferroptosis in GC progression. The present study observed that myricetin could trigger ferroptosis in GC cells by enhancing malondialdehyde production and Fe2+ accumulation while suppressing glutathione levels. Mechanistically, myricetin directly interacted with NADPH oxidase 4 (NOX4), influencing its stability by inhibiting its ubiquitin degradation. Moreover, myricetin regulated the inhibition of ferroptosis induced by Helicobacter pylori cytotoxin-associated gene A (CagA) through the NOX4/NRF2/GPX4 pathway. In vivo experiments demonstrated that myricetin treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice. It was accompanied by increased NOX4 expression in tumor tissue and suppression of the NRF2/GPX4 antioxidant pathway. Therefore, this research underscores myricetin as a novel inducer of ferroptosis in GC cells through its interaction with NOX4. It is a promising candidate for GC treatment.


Asunto(s)
Ferroptosis , Flavonoides , Neoplasias Gástricas , Animales , Ratones , NADPH Oxidasa 4 , Ratones Desnudos , Factor 2 Relacionado con NF-E2
8.
Am J Cancer Res ; 14(2): 630-642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455424

RESUMEN

DEC1 is a helix-loop-helix (bHLH) transcription factor, whose deregulation has been observed in several tumors. However, the effects of the dysregulation of this gene on epithelial-mesenchymal transition (EMT) are controversial, with its roles in gastric cancer (GC) remaining unclear. In the present study, we focused on the impact of DEC1 on EMT and cell mobility in gastric cancer. We found that DEC1 expression positively correlated with TGF-ß1 and EMT markers in tumor issues, and that DEC1 facilitated TGF-ß1-induced EMT in gastric cancer. In addition, gastric cancer cell migration potential was reduced after DEC1 knockdown. Using murine metastasis models, we confirmed that DEC1 promoted GC metastasis and further explored the correlation of DEC1 with TGF-ß1 and E-cadherin in vivo. Chromatin immunoprecipitation (ChIP) assays revealed that DEC1 could directly interact with the promoter region of TGF-ß1. These results suggest that DEC1 functions as a tumor enhancer that partially participates in TGF-ß1-mediated EMT processes in GC, thus contributing to tumor metastasis.

9.
Biomed Pharmacother ; 173: 116333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479177

RESUMEN

Metabolic dysfunction-associated steatotic liver disease(MASLD), formerly known as non-alcoholic fatty liver disease(NAFLD), has become a major cause of chronic liver disease and a significant risk factor for hepatocellular carcinoma, which poses a huge burden on global public health and economy. MASLD includes steatotic liver disease, steatohepatitis, and cirrhosis, and the latter two cause great harm to human health and life, even complicated with liver cancer. Immunologic mechanism plays a major role in promoting its development into hepatitis and cirrhosis. Now more and more evidences show that T cells play an important role in the progression of MASLD. In this review, we discuss the double roles of T cells in MASLD from the perspective of T cell response pathways, as well as new evidences regarding the possible application of immunomodulatory therapy in MASH.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad del Hígado Graso no Alcohólico , Humanos , Cirrosis Hepática , Inmunomodulación , Inmunidad
10.
Adv Biol (Weinh) ; 8(4): e2300534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38314942

RESUMEN

N6-methyladenosine (m6A) modification is involved in many aspects of gastric cancer (GC). Moreover, m6A and glycolysis-related genes (GRGs) play important roles in immunotherapeutic and prognostic implication of GC. However, GRGs involved in m6A regulation have never been analyzed comprehensively in GC. Herein, the study aims to identify and validate a novel signature based on m6A-related GRGs in GC patients. Therefore, a m6A-related GRGs signature is established, which can predict the survival of patients with GC and remain an independent prognostic factor in multivariate analyses. Clinical significance of the model is well validated in internal cohort and independent validation cohort. In addition, the expression levels of risk model-related GRGs in clinical samples are validated. Consistent with the database results, all model genes are up-regulated in expression except DCN. After regrouping the patients based on this risk model, the study can effectively distinguish between them in respect to immune-cell infiltration microenvironment and immunotherapeutic response. Additionally, candidate drugs targeting risk model-related GRGs are confirmed. Finally, a nomogram combining risk scores and clinical parameters is created, and calibration plots show that the nomogram can accurately predict survival. This risk model can serve as a reliable assessment tool for predicting prognosis and immunotherapeutic responses in GC patients.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Pronóstico , Genes Reguladores , Nomogramas , Inmunoterapia , Microambiente Tumoral/genética
11.
Angew Chem Int Ed Engl ; 63(19): e202400551, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38416545

RESUMEN

Detecting low-frequency DNA mutations hotspots cluster is critical for cancer diagnosis but remains challenging. Quantitative PCR (qPCR) is constrained by sensitivity, and allele-specific PCR is restricted by throughput. Here we develop a long blocker displacement amplification (LBDA) coupled with qPCR for ultrasensitive and multiplexed variants detection. By designing long blocker oligos to perfectly match wildtype sequences while mispairing with mutants, long blockers enable 14-44 nt enrichment regions which is 2-fold longer than normal BDA in the experiments. For wild template with a specific nucleotide, LBDA can detect different mutation types down to 0.5 % variant allele frequency (VAF) in one reaction, with median enrichment fold of 1,000 on 21 mutant DNA templates compared to the wild type. We applied LBDA-qPCR to detect KRAS and NRAS mutation hotspots, utilizing a single plex assay capable of covering 81 mutations and tested in synthetic templates and colorectal cancer tissue samples. Moreover, the mutation types were verified through Sanger sequencing, demonstrating concordance with results obtained from next generation sequencing. Overall, LBDA-qPCR provides a simple yet ultrasensitive approach for multiplexed detection of low VAF mutations hotspots, presenting a powerful tool for cancer diagnosis and monitoring.


Asunto(s)
Mutación , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , Proteínas de la Membrana/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , GTP Fosfohidrolasas/genética
12.
Cell Commun Signal ; 22(1): 110, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347544

RESUMEN

The phenomenon of phase separation is quite common in cells, and it is involved in multiple processes of life activities. However, the current research on the correlation between protein modifications and phase separation and the interference with the tendency of phase separation has some limitations. Here we focus on several post-translational modifications of proteins, including protein phosphorylation modification at multiple sites, methylation modification, acetylation modification, ubiquitination modification, SUMOylation modification, etc., which regulate the formation of phase separation and the stability of phase separation structure through multivalent interactions. This regulatory role is closely related to the development of neurodegenerative diseases, tumors, viral infections, and other diseases, and also plays essential functions in environmental stress, DNA damage repair, transcriptional regulation, signal transduction, and cell homeostasis of living organisms, which provides an idea to explore the interaction between novel protein post-translational modifications and phase separation. Video Abstract.


Asunto(s)
Separación de Fases , Procesamiento Proteico-Postraduccional , Ubiquitinación , Fosforilación , Proteínas , Acetilación
13.
Cancer Lett ; 587: 216680, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38346584

RESUMEN

Metabolic reprogramming is a typical hallmark of cancer. Enhanced glycolysis in tumor cells leads to the accumulation of lactate, which is traditionally considered metabolic waste. With the development of high-resolution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), the lactate-derived, lysine lactylation(Kla), has been identified. Kla can alter the spatial configuration of chromatin and regulate the expression of corresponding genes. Metabolic reprogramming and epigenetic remodeling have been extensively linked. Accumulating studies have subsequently expanded the framework on the key roles of this protein translational modification (PTM) in tumors and have provided a new concept of cancer-specific regulation by Kla.


Asunto(s)
Lisina , Neoplasias , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ácido Láctico , Neoplasias/genética
14.
Heliyon ; 10(1): e23919, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38223735

RESUMEN

Immunotherapy, specifically immune checkpoint inhibitors, has emerged as a promising approach for treating malignant tumors. The gut, housing approximately 70 % of the body's immune cells, is abundantly populated with gut bacteria that actively interact with the host's immune system. Different bacterial species within the intestinal flora are in a delicate equilibrium and mutually regulate each other. However, when this balance is disrupted, pathogenic microorganisms can dominate, adversely affecting the host's metabolism and immunity, ultimately promoting the development of disease. Emerging researches highlight the potential of interventions such as fecal microflora transplantation (FMT) to improve antitumor immune response and reduce the toxicity of immunotherapy. These remarkable findings suggest the major role of intestinal flora in the development of cancer immunotherapy and led us to the hypothesis that intestinal flora transplantation may be a new breakthrough in modifying immunotherapy side effects.

15.
mSystems ; 9(1): e0099123, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38112416

RESUMEN

Drug addiction can seriously damage human physical and mental health, while detoxification is a long and difficult process. Although studies have reported changes in the oral microbiome of methamphetamine (METH) users, the role that the microbiome plays in the process of drug addiction is still unknown. This study aims to explore the function of the microbiome based on analysis of the variations in the oral microbiome and metabolome of METH users. We performed the 16S rRNA sequencing analysis based on the oral saliva samples collected from 278 METH users and 105 healthy controls (CTL). In addition, the untargeted metabolomic profiling was conducted based on 220 samples. Compared to the CTL group, alpha diversity was reduced in the group of METH users and the relative abundances of Peptostreptococcus and Gemella were significantly increased, while the relative abundances of Campylobacter and Aggregatibacter were significantly decreased. Variations were also detected in oral metabolic pathways, including enhanced tryptophan metabolism, lysine biosynthesis, purine metabolism, and steroid biosynthesis. Conversely, the metabolic pathways of porphyrin metabolism, glutathione metabolism, and pentose phosphate were significantly reduced. It was speculated that four key microbial taxa, i.e., Peptostreptococcus, Gemella, Campylobacter, and Aggregatibacter, could be involved in the toxicity and addiction mechanisms of METH by affecting the above metabolic pathways. It was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders was gradually increased. Our study provides novel insights into exploring the toxic damage and addiction mechanisms underlying the METH addiction.IMPORTANCEIt was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders gradually increased. The prediction models based on oral microbiome and metabolome could effectively predict the methamphetamine (METH) smoking. Our study provides novel insights into the exploration of the molecular mechanisms regulating the toxic damage and addiction of METH as well as new ideas for early prevention and treatment strategies of METH addiction.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Metanfetamina , Microbiota , Humanos , Metanfetamina/efectos adversos , ARN Ribosómico 16S/genética , Trastornos Relacionados con Anfetaminas/complicaciones , Metaboloma , Microbiota/genética , Triptaminas
16.
Neurosci Res ; 203: 42-50, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38154662

RESUMEN

Numerous evidences showed that human umbilical cord blood (UCB) mononuclear cells were a promising approach for the therapy of ischemic stroke(IS). The effect of stage-specific embryonic antigen 3 (SSEA3)positive subpopulation in UCB was not investigated in IS. In this study, we isolated SSEA3 positive cells from healthy UCB mononuclear cells, which comprised about 7.01% of the total UCB-mononuclear cells. Flow cytometry analysis revealed that SSEA3(+)UCB cells were almost positive for CD44 and CD45, and negative for CD73, CD90 and CD105. The expression of Oct3/4 in SSEA3(+)UCB cells were higher than that in UCB. SSEA3(+)UCB cells sorted by magnetic cell sorting were intravenously injected into the middle cerebral arterial occlusion(MCAO) rat model. Neurological score showed that SSEA3(+)UCB transplantation group exhibited significant improvements in the functional outcome of MCAO rats than UCB transplantation group. Nissl staining and microtubule association protein-2(MAP2) immunofluorescence staining showed that the SSEA3(+)UCB transplantation group decreased neuronal loss. SSEA3(+)UCB transplantation group reduced neuronal apoptosis, inhibited caspase3 expression, and decreased tumor necrosis factor α(TNF-α). These results indicate that SSEA3 positive cells are a novel subpopulation of UCB cells, which exhibit great potential for the treatment of ischemic stroke.


Asunto(s)
Modelos Animales de Enfermedad , Sangre Fetal , Accidente Cerebrovascular Isquémico , Animales , Humanos , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/metabolismo , Sangre Fetal/citología , Leucocitos Mononucleares/trasplante , Leucocitos Mononucleares/metabolismo , Masculino , Ratas Sprague-Dawley , Ratas , Infarto de la Arteria Cerebral Media/terapia , Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Antígenos Embrionarios Específico de Estadio/metabolismo , Isquemia Encefálica/terapia , Apoptosis/fisiología
17.
Exploration (Beijing) ; 3(4): 20220136, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37933235

RESUMEN

Oxaliplatin is a first-line chemotherapy drug widely adopted in colorectal cancer (CRC) treatment. However, a large proportion of patients tend to become resistant to oxaliplatin, causing chemotherapy to fail. At present, researches on oxaliplatin resistance mainly focus on the genetic and epigenetic alterations during cancer evolution, while the characteristics of high-order three-dimensional (3D) conformation of genome are yet to be explored. In order to investigate the chromatin conformation alteration during oxaliplatin resistance, we performed multi-omics study by combining DLO Hi-C, ChIP-seq as well as RNA-seq technologies on the established oxaliplatin-resistant cell line HCT116-OxR, as well as the control cell line HCT116. The results indicate that 19.33% of the genome regions have A/B compartments transformation after drug resistance, further analysis of the genes converted by A/B compartments reveals that the acquisition of oxaliplatin resistance in tumor cells is related to the reduction of reactive oxygen species and enhanced metastatic capacity. Our research reveals the spatial chromatin structural difference between CRC cells and oxaliplatin resistant cells based on the DLO Hi-C and other epigenetic omics experiments. More importantly, we provide potential targets for oxaliplatin-resistant cancer treatment and a new way to investigate drug resistance behavior under the perspective of 3D genome alteration.

18.
Biomed Pharmacother ; 168: 115713, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852104

RESUMEN

Metabolic reprogramming is a common hallmark of cancers and involves alterations in many metabolic pathways during tumor initiation and progression. However, the cancer-specific modulation of metabolic reprogramming requires further elucidation. Succinylation, a newly identified protein posttranslational modification (PTM), participates in many cellular processes by transferring a succinyl group to a residue of the target protein, which is related to various pathological disorders including cancers. In recent years, there has been a gradual increase in the number of studies on the regulation of tumors by protein succinylation. Notably, accumulating evidence suggests that succinylation can mediate cancer cell metabolism by altering the structure or activity of metabolism-related proteins and plays vital roles in metabolic reprogramming. Furthermore, some antitumor drugs have been linked to succinylation-mediated tumor-associated metabolism. To better elucidate lysine succinylation mediated tumor metabolic reprogramming, this review mainly summarizes recent studies on the regulation and effects of protein succinylation in tumors, focusing on the metabolic regulation of tumorigenesis and development, which will provide new directions for cancer diagnosis as well as possible therapeutic targets.


Asunto(s)
Redes y Vías Metabólicas , Neoplasias , Procesamiento Proteico-Postraduccional , Neoplasias/tratamiento farmacológico
19.
Cell Death Discov ; 9(1): 373, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833287

RESUMEN

Dermatan sulfate epimerase (DSE) is a C5 epiminase that plays a key role in converting chondroitin sulfate into dermal sulfate. DSE is often upregulated during carcinogenesis of some types of cancer and can regulate growth factor signaling in cancer cells. However, the expression and function of DSE in human melanoma have not been reported. In this study, we investigated the influence of tumor-derived DSE in melanoma progression and the potential mechanism of their action. First, proteomic analysis of collected melanoma tissues revealed that DSE was significantly down-regulated in melanoma tissues. DSE silenced or overexpressed melanoma cells were constructed to detect the effect of DSE on melanoma cells, and it was found that the up-regulation of DSE significantly inhibited the proliferation, migration and invasion of melanoma cells. Data analysis and flow cytometry were used to evaluate the immune subpopulations in tumors, and it was found that the high expression of DSE was closely related to the invasion of killer immune cells. Mechanistically, DSE promoted the expression of VCAN, which inhibited the biological activity of melanoma cells. Together, these results suggest that DSE is downregulated in melanoma tissues, and that high expression of DSE can promote melanoma progression by inducing immune cell infiltration and VCAN expression.

20.
ACS Sens ; 8(11): 4071-4078, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37889801

RESUMEN

Hyaluronidase (HAase) is a biomarker for cancer, and its detection is of great significance for early diagnosis. However, the requirement of sophisticated instruments, tedious operation procedures, and labeled molecules of conventional HAase biosensing methods hampers their widespread applications. Herein, we report a portable slippery viscosity-sensing platform with time readout for the first time and demonstrate HAase and tannic acid (TA, HAase inhibitor) detection as a model system. HAase specifically cleaves hyaluronic acid (HA) and decreases HA solution viscosity, thereby shortening the aqueous droplet's sliding time on a slippery surface. Thus, the HA solution viscosity alteration due to enzymatic hydrolysis is used to quantify the HAase concentration through the difference in the sliding time of the aqueous droplets on a slippery surface. The developed HAase sensing platform exhibits high sensitivity with a minimum detection limit of 0.23 U/mL and excellent specificity without the use of specialized instruments and labeled molecules. HAase detection in actual urine samples by a standard addition method is performed as well. Moreover, the quantitative detection of TA with an IC50 value of 37.68 ± 1.38 µg/mL is achieved. As an equipment-free, label-free, and high-portability sensing platform, this method holds promise in developing a user-friendly and inexpensive point-of-care testing (POCT) device for HAase detection, and its use can be extended to analyze other analytes with different stimuli-responsive polymers for great universality and expansibility in biosensing applications.


Asunto(s)
Hialuronoglucosaminidasa , Neoplasias , Humanos , Hialuronoglucosaminidasa/orina , Viscosidad , Biomarcadores de Tumor/orina , Ácido Hialurónico/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA