Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230237, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853570

RESUMEN

The synaptic tagging and capture (STC) hypothesis lays the framework on the synapse-specific mechanism of protein synthesis-dependent long-term plasticity upon synaptic induction. Activated synapses will display a transient tag that will capture plasticity-related products (PRPs). These two events, tag setting and PRP synthesis, can be teased apart and have been studied extensively-from their electrophysiological and pharmacological properties to the molecular events involved. Consequently, the hypothesis also permits interactions of synaptic populations that encode different memories within the same neuronal population-hence, it gives rise to the associativity of plasticity. In this review, the recent advances and progress since the experimental debut of the STC hypothesis will be shared. This includes the role of neuromodulation in PRP synthesis and tag integrity, behavioural correlates of the hypothesis and modelling in silico. STC, as a more sensitive assay for synaptic health, can also assess neuronal aberrations. We will also expound how synaptic plasticity and associativity are altered in ageing-related decline and pathological conditions such as juvenile stress, cancer, sleep deprivation and Alzheimer's disease. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Encéfalo , Memoria , Plasticidad Neuronal , Sinapsis , Sinapsis/fisiología , Humanos , Plasticidad Neuronal/fisiología , Encéfalo/fisiología , Memoria/fisiología , Animales , Modelos Neurológicos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38818918

RESUMEN

A malignant tumor is a frequent and common disease that severely threatens human health. Many mechanisms, such as cell signaling pathway, anti-apoptosis mechanism, cell stemness, metabolism, and cell phenotype, have been studied to explain the reasons for chemotherapy, radioresistance, and tumor recurrences in antitumor treatment. Cancer stem cells (CSCs) are important tumor cell subclasses that can potentially organize and regulate stem cell properties. Growing evidence suggests that CSCs can initiate tumors and constitute a significant factor in metastasis, recurrence, and treatment resistance. The inability to completely target and remove CSCs is a considerable obstacle in tumor treatment. Therefore, drugs and therapeutic strategies that can effectively intervene with CSCs are essential for the treatment of different tumor types. However, the current strategies and efficacy of targeted elimination of CSCs are very limited. Oxidative stress has been recognized to play a crucial role in cancer pathophysiology. Moreover, reactive oxygen species (ROS) production and imbalance of the built-in cellular antioxidant defense system are hallmarks of tumor and cancer etiology. The current paper will focus on the regulation and mechanism behind oxidative stress in tumors and cancer stem cells and its tumor therapy applications. Additionally, the article discusses the role of CSCs in causing tumor treatment resistance and recurrence based on a redox perspective. The study also emphasizes that targeted modulation of oxidative stress in CSCs has great potential in tumor therapy, providing novel prospects for tumor therapy.

3.
Biochem Pharmacol ; 224: 116202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615917

RESUMEN

As bone-resorbing cells rich in mitochondria, osteoclasts require high iron uptake to promote mitochondrial biogenesis and maintain a high-energy metabolic state for active bone resorption. Given that abnormal osteoclast formation and activation leads to imbalanced bone remodeling and osteolytic bone loss, osteoclasts may be crucial targets for treating osteolytic diseases such as periodontitis. Isobavachin (IBA), a natural flavonoid compound, has been confirmed to be an inhibitor of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). However, its effects on periodontitis-induced bone loss and the potential mechanism of its anti-osteoclastogenesis effect remain unclear. Our study demonstrated that IBA suppressed RANKL-induced osteoclastogenesis in BMMs and RAW264.7 cells and inhibited osteoclast-mediated bone resorption in vitro. Transcriptomic analysis indicated that iron homeostasis and reactive oxygen species (ROS) metabolic process were enriched among the differentially expressed genes following IBA treatment. IBA exerted its anti-osteoclastogenesis effect by inhibiting iron accumulation in osteoclasts. Mechanistically, IBA attenuated iron accumulation in RANKL-induced osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway to upregulate ferroportin1 (Fpn1) expression and promote Fpn1-mediated intracellular iron efflux. We also found that IBA inhibited mitochondrial biogenesis and function, and reduced RANKL-induced ROS generation in osteoclasts. Furthermore, IBA attenuated periodontitis-induced bone loss by reducing osteoclastogenesis in vivo. Overall, these results suggest that IBA may serve as a promising therapeutic strategy for bone diseases characterized by osteoclastic bone resorption.


Asunto(s)
Hierro , Ratones Endogámicos C57BL , Mitocondrias , Biogénesis de Organelos , Osteoclastos , Periodontitis , Animales , Ratones , Hierro/metabolismo , Células RAW 264.7 , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Osteogénesis/efectos de los fármacos , Masculino , Resorción Ósea/metabolismo , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Resorción Ósea/etiología , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/prevención & control , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/patología
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38627939

RESUMEN

The latest breakthroughs in spatially resolved transcriptomics technology offer comprehensive opportunities to delve into gene expression patterns within the tissue microenvironment. However, the precise identification of spatial domains within tissues remains challenging. In this study, we introduce AttentionVGAE (AVGN), which integrates slice images, spatial information and raw gene expression while calibrating low-quality gene expression. By combining the variational graph autoencoder with multi-head attention blocks (MHA blocks), AVGN captures spatial relationships in tissue gene expression, adaptively focusing on key features and alleviating the need for prior knowledge of cluster numbers, thereby achieving superior clustering performance. Particularly, AVGN attempts to balance the model's attention focus on local and global structures by utilizing MHA blocks, an aspect that current graph neural networks have not extensively addressed. Benchmark testing demonstrates its significant efficacy in elucidating tissue anatomy and interpreting tumor heterogeneity, indicating its potential in advancing spatial transcriptomics research and understanding complex biological phenomena.


Asunto(s)
Benchmarking , Perfilación de la Expresión Génica , Análisis por Conglomerados , Redes Neurales de la Computación
5.
Updates Surg ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530611

RESUMEN

This study attempted to compare the prognostic performance of lymph node ratio (LNR) staging system with different cutoff values relative to American Joint Committee on Cancer (AJCC) pN staging system in stage III colorectal cancer (CRC). Overall, 45,069 patients from the SEER dataset and 69 patients from the Second Affiliated Hospital of Nanjing Medical University (the External set) who underwent surgical resection of the primary tumor and were diagnosed with stage III CRC by postoperative pathology were included. Patients were divided into three subgroups based on the LNR cutoff used in previous studies, Kaplan-Meier curves were plotted, and log-rank test was used to compare the differences among groups in terms of cancer-specific survival (CSS). Cox regression model was applied for survival analysis. To evaluate the discriminatory power of different lymph node staging systems, Harrell's C statistic(C-index) and Akaike's Information Criterion (AIC) were applied. A set of optimal cutoff values (0.11; 0.36; 0.66) of LNR staging system with the most considerable discriminatory power to the prognosis in patients with stage III CRC (SEER set: C-index = 0.714; AIC = 58,942.46, External set: C-index = 0.809; AIC = 164.36) were obtained, and both were superior to the AJCC pN staging system (SEER set: C-index = 0.708; AIC = 59,071.20, External set: C-index = 0.788; AIC = 167.06). For evaluating the prognostic efficacy of patients with stage III colorectal cancer, the cutoff value (0.11; 0.36; 0.66) of LNR staging system had the best discrimination and prognostic ability, which was superior to LNR staging system under other cutoff values and AJCC pN staging system.

6.
ACS Appl Mater Interfaces ; 16(9): 11239-11250, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38395769

RESUMEN

Hepatic cirrhosis has become a global public health concern with high mortality and currently lacks effective clinical treatment methods. Activation of hepatic stellate cells (HSCs) and the large number of macrophages infiltrating into the liver play a critical role in the development of liver cirrhosis. This study developed a novel modified nanoparticle system (SRF-CS-PSA NPs) in which Sorafenib (SRF) was encapsulated by palmitic acid-modified albumin (PSA) and further modified with chondroitin sulfate (CS). These modifications enabled the SRF-CS-PSA NPs to effectively target hepatic stellate cells (HSCs) and macrophages. SRF-CS-PSA NPs showed uniform particle size distribution of approximately 120 nm and high loading efficiency of up to 99.5% and can be taken up by HSCs and macrophages via CD44 and SR-A receptors, respectively. In a mouse model of liver cirrhosis, SRF-CS-PSA NPs demonstrated superior targeting and inhibition of HSCs and macrophages, effectively reversing the process of liver cirrhosis. Overall, our study demonstrates the potential of SRF-CS-PSA NPs as a targeted therapy for liver cirrhosis, with promising clinical applications.


Asunto(s)
Células Estrelladas Hepáticas , Nanopartículas , Ratones , Animales , Cirrosis Hepática/tratamiento farmacológico , Hígado/patología , Sorafenib/uso terapéutico , Albúminas
7.
Int J Pharm ; 653: 123897, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38360289

RESUMEN

Surgical removal combined with postoperative chemotherapy is still the mainstay of treatment for most solid tumors. Although chemotherapy reduces the risk of recurrence and metastasis after surgery, it may produce serious adverse effects and impair patient compliance. In situ drug delivery systems are promising tools for postoperative cancer treatment, improving drug delivery efficiency and reducing side effects. Herein, an injectable phospholipid-based in situ forming gel (IPG) was prepared for the co-delivery of antitumor agent pirarubicin (THP) and cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) in the surgical incision, and the latter are used extensively in adjuvant chemotherapy for cancer. After injection, the IPG co-loaded with THP and CXB (THP-CXB-IPG) underwent spontaneous phase transition and formed a drug reservoir that fitted the irregular surgical incisions perfectly. In vitro drug release studies and in vivo pharmacokinetic analysis had demonstrated the sustained release behaviors of THP-CXB-IPG. The in vivo therapeutic efficacy was evaluated in mice that had undergone surgical resection of breast cancer, and the THP-CXB-IPG showed considerable inhibition of residual tumor growth after surgery and reduced the incidence of pulmonary metastasis. Moreover, it reduced the systemic toxicity of chemotherapeutic agents. Therefore, THP-CXB-IPG can be a promising candidate for preventing postoperative recurrence and metastasis.


Asunto(s)
Neoplasias de la Mama , Doxorrubicina/análogos & derivados , Humanos , Ratones , Animales , Femenino , Celecoxib , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/farmacología
8.
Br J Pharmacol ; 181(12): 1843-1856, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38378175

RESUMEN

BACKGROUND AND PURPOSE: Our previous studies have found that andrographolide (AGP) alleviates calcific aortic valve disease (CAVD), but the underlying mechanism is unclear. This study explores the molecular target and signal mechanisms of AGP in inhibiting CAVD. EXPERIMENTAL APPROACH: The anti-calcification effects of the aortic valve with AGP treatment were evaluated by alizarin red staining in vitro and ultrasound and histopathological assessment of a high-fat (HF)-fed ApoE-/- mouse valve calcification model. A correlation between the H3 histone lactylation (H3Kla) and calcification was detected. Molecular docking and surface plasmon resonance (SPR) experiments were further used to confirm p300 as a target for AGP. Overexpression (oe) and silencing (si) of p300 were used to verify the inhibitory effect of AGP targeting p300 on the H3Kla in vitro and ex vivo. KEY RESULTS: AGP significantly inhibited calcium deposition in valve interstitial cells (VICs) and ameliorated aortic valve calcification. The multi-omics analysis revealed the glycolysis pathway involved in CAVD, indicating that AGP interfered with lactate production by regulating lactate dehydrogenase A (LDHA). In addition, lactylation, a new post-translational modification, was shown to have a role in promoting aortic valve calcification. Furthermore, H3Kla and H3K9la site were shown to correlate with Runx2 expression inhibition by AGP treatment. Importantly, we found that p300 transferase was the molecular target of AGP in inhibiting H3Kla. CONCLUSIONS AND IMPLICATIONS: Our findings, for the first time, demonstrated that AGP alleviates calcification by interfering with H3Kla via p300, which might be a powerful drug to prevent CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Diterpenos , Histonas , Animales , Humanos , Masculino , Ratones , Válvula Aórtica/patología , Válvula Aórtica/metabolismo , Válvula Aórtica/efectos de los fármacos , Estenosis de la Válvula Aórtica/tratamiento farmacológico , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Calcinosis/metabolismo , Calcinosis/tratamiento farmacológico , Calcinosis/patología , Diterpenos/farmacología , Diterpenos/química , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/antagonistas & inhibidores , Histonas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores
9.
Int Endod J ; 57(6): 682-699, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403990

RESUMEN

AIM: This study aimed to determine the effects of iRoot BP Plus on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro and inflammation-mediated bone resorption in vivo and investigated the underlying molecular mechanisms. METHODOLOGY: CCK-8 was performed to test cell viability in RANKL-induced RAW 264.7 cells and BMDMs in response to iRoot BP Plus. The effect of iRoot BP Plus on osteoclastogenesis was determined using TRAP staining and phalloidin staining, respectively. Pit formation assay was conducted to measure osteoclast resorptive capacity. Western blot and qPCR were performed to examine osteoclast-related proteins and gene expression, respectively. Western blot was also used to investigate the signalling pathways involved. For in vivo experiments, an LPS-induced mouse calvarial bone resorption model was established to analyse the effect of iRoot BP Plus on bone resorption (n = 6 per group). At 7 days, mouse calvaria were collected and prepared for histological analysis. RESULTS: We identified that iRoot BP Plus extracts significantly attenuated RANKL-induced osteoclastogenesis, reduced sealing zone formation, restrained osteolytic capacity and decreased osteoclast-specific gene expression (p < .01). Mechanistically, iRoot BP Plus extracts reduced TRAF6 via proteasomal degradation, then suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), blocked the nuclear translocation of c-Fos and diminished nuclear factor-κB (NF-κB) p65 and NFATc1 accumulation. Consistent with the in vitro results, iRoot BP Plus extracts attenuated osteoclast activity thus protecting against inflammatory bone resorption in vivo (p < .05), which was accompanied by a suppression of TRAF6, c-Fos, NFATc1 and cathepsin K expression. CONCLUSION: These findings provide valuable insights into the signalling mechanisms underlying nanoparticulate bioceramic putty-mediated bone homeostasis.


Asunto(s)
Resorción Ósea , Osteoclastos , Osteogénesis , Ligando RANK , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Animales , Ratones , Factor 6 Asociado a Receptor de TNF/metabolismo , Transducción de Señal/efectos de los fármacos , Resorción Ósea/metabolismo , Células RAW 264.7 , Osteogénesis/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Ligando RANK/metabolismo , Nanopartículas , Cerámica/farmacología , Inflamación/metabolismo , Supervivencia Celular/efectos de los fármacos
10.
J Imaging Inform Med ; 37(3): 1160-1176, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38326533

RESUMEN

In intraoperative brain cancer procedures, real-time diagnosis is essential for ensuring safe and effective care. The prevailing workflow, which relies on histological staining with hematoxylin and eosin (H&E) for tissue processing, is resource-intensive, time-consuming, and requires considerable labor. Recently, an innovative approach combining stimulated Raman histology (SRH) and deep convolutional neural networks (CNN) has emerged, creating a new avenue for real-time cancer diagnosis during surgery. While this approach exhibits potential, there exists an opportunity for refinement in the domain of feature extraction. In this study, we employ coherent Raman scattering imaging method and a self-supervised deep learning model (VQVAE2) to enhance the speed of SRH image acquisition and feature representation, thereby enhancing the capability of automated real-time bedside diagnosis. Specifically, we propose the VQSRS network, which integrates vector quantization with a proxy task based on patch annotation for analysis of brain tumor subtypes. Training on images collected from the SRS microscopy system, our VQSRS demonstrates a significant speed enhancement over traditional techniques (e.g., 20-30 min). Comparative studies in dimensionality reduction clustering confirm the diagnostic capacity of VQSRS rivals that of CNN. By learning a hierarchical structure of recognizable histological features, VQSRS classifies major tissue pathological categories in brain tumors. Additionally, an external semantic segmentation method is applied for identifying tumor-infiltrated regions in SRH images. Collectively, these findings indicate that this automated real-time prediction technique holds the potential to streamline intraoperative cancer diagnosis, providing assistance to pathologists in simplifying the process.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Espectrometría Raman , Humanos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico , Espectrometría Raman/métodos , Redes Neurales de la Computación , Aprendizaje Automático Supervisado
11.
Ann Plast Surg ; 92(1): 28-33, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994444

RESUMEN

BACKGROUND: Acquired symmastia is a rare complication after breast augmentation that is difficult to fix. METHODS: The medical records of 18 female patients with symmastia treated by our team were reviewed. Data collected included preoperative medical history, implant size, and breast base width. Surgical techniques were systematically reviewed and analyzed based on postoperative follow-up results. RESULTS: Of the 18 patients, 15 patients had undergone implanted breast augmentation and 3 had injected breast augmentation. All 18 patients underwent comprehensive repair with various surgical techniques. Three patients showed recurrence after operation. Four patients were dissatisfied with postoperative breast size and underwent 2-stage replacement surgery. CONCLUSIONS: Symmastia is an intractable surgical complication. Surgical classification can help assess the difficulty of surgery in advance, and the surgical strategy plan can help the surgeon to control the quality of the repair surgery.


Asunto(s)
Implantación de Mama , Implantes de Mama , Mamoplastia , Humanos , Femenino , Implantes de Mama/efectos adversos , Implantación de Mama/efectos adversos , Implantación de Mama/métodos , Reoperación/métodos , Mamoplastia/efectos adversos , Mamoplastia/métodos , Estudios Retrospectivos
12.
J Sci Food Agric ; 104(4): 2467-2476, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37986244

RESUMEN

BACKGROUND: The application of curcumin (Cur) in the food industry is usually limited by its low water solubility and poor stability. This study aimed to fabricate self-assembled nanoparticles using pea vicilin (7S) through a pH-shifting method (pH 7-pH 12-pH 7) to develop water-soluble nanocarriers of Cur. RESULTS: Intrinsic fluorescence, far-UV circular dichroism spectra and transmission electron microscopy analysis demonstrated that the structure of 7S could be unfolded at pH 12.0 and refolded when the pH shifted to 7.0. The assembled 7S-Cur exhibited a high loading ability of 81.63 µg mg-1 for Cur and homogeneous particle distribution. Cur was encapsulated in the 7S hydrophobic nucleus in an amorphous form and combined through hydrophobic interactions and hydrogen bonding, resulting in the static fluorescence quenching of 7S. Compared with free Cur, the retention rates of Cur in 7S-Cur were approximately 1.12 and 1.70 times higher under UV exposure at 365 nm or heating at 75 °C for 120 min, respectively, as well as 7S-Cur showing approximately 1.50 times higher antioxidant activity. During simulated gastrointestinal experiments, 7S-Cur exhibited a better sustained-release property than free Cur. CONCLUSION: The self-assembled 7S nanocarriers prepared using a pH-shifting method effectively improved the antioxidant activity, environmental stability and sustained-release property of Cur. Therefore, 7S isolated from pea protein could be used as potential nanocarriers for Cur. © 2023 Society of Chemical Industry.


Asunto(s)
Curcumina , Nanopartículas , Proteínas de Almacenamiento de Semillas , Curcumina/química , Antioxidantes , Pisum sativum , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Nanopartículas/química , Agua , Tamaño de la Partícula
13.
Eur J Pharmacol ; 964: 176272, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38110140

RESUMEN

BACKGROUND: Postoperative abdominal adhesion (PAA) is a common postoperative complication. Clinically, various methods have been used to prevent the occurrence of PAA, such as drugs and physiotherapy; however, no satisfactory results have been obtained. Luteolin (LUT) is a natural flavonoid that reduces inflammation and acts as an antioxidant. This research aimed to examine the impact and mechanism of LUT in reducing PAA. METHODS: C57/BL6 mice were used in vivo experiments. PAA model was established using a brush friction method. Visual scoring and hematoxylin and eosin staining were used to score the severity of adhesions. Network pharmacology was used to infer potential targets and core pathways of LUT. Hydrogen peroxide (H2O2) was used to induce oxidative stress in vitro, while the reactive oxygen species (ROS) assay kit was used to evaluate oxidative stress levels. Western blotting, cell immunofluorescence, and multiple immunofluorescence assays were used to detect α-SMA, vimentin, E-cadherin, collagen I, or AKT phosphorylation level. Scratch assay was used to detect cell migration. RESULTS: LUT reduced the degree of PAA in mice. It attenuated H2O2-induced ROS production and reversed mesothelial-mesenchymal transition (MMT) in HMrSV5 cells. Network pharmacology analysis showed that LUT likely exerted anti-adhesion activity by regulating the PI3K-Akt signaling pathway. Phosphorylated Akt levels were significantly reduced in LUT-treated HMrSV5 cells. LUT also significantly reduced the expression of vimentin and collagen I in adherent tissues and upregulated E-cadherin expression. CONCLUSION: LUT blocks the ROS/PI3K/AKT pathway, thereby inhibiting MMT and reducing PAA. To this end, LUT has potential in PAA therapy.


Asunto(s)
Luteolina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Cadherinas/metabolismo , Colágeno , Peróxido de Hidrógeno/farmacología , Luteolina/farmacología , Luteolina/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vimentina/metabolismo
14.
ACS Nano ; 17(24): 24972-24987, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38093174

RESUMEN

Tumor metastasis is an intricate multistep process regulated via various proteins and enzymes modified and secreted by swollen Golgi apparatus in tumor cells. Thus, Golgi complex is considered as an important target for the remedy of metastasis. Currently, Golgi targeting technologies are mostly employed in Golgi-specific fluorescent probes for diagnosis, but their applications in therapy are rarely reported. Herein, we proposed a prodrug (INR) that can target and destroy the Golgi apparatus, which consisted of indomethacin (IMC) as the Golgi targeting moiety and retinoic acid (RA), a Golgi disrupting agent. The linker between IMC and RA was designed as a hypoxia-responsive nitroaromatic structure, which ensured the release of the prototype drugs in the hypoxic tumor microenvironment. Furthermore, INR could be assembled with pirarubicin (THP), an anthracycline, to form a carrier-free nanoparticle (NP) by emulsion-solvent evaporation method. A small amount of mPEG2000-DSPE was added to shield the positive charges and improve the stability of the nanoparticle to obtain PEG-modified nanoparticle (PNP). It was proved that INR released the prototype drugs in tumor cells and hypoxia promoted the release. The Golgi destructive effect of RA in INR was amplified owing to the Golgi targeting ability of IMC, and IMC also inhibited the protumor COX-2/PGE2 signaling. Finally, PNP exhibited excellent curative efficacy on 4T1 primary tumor and its pulmonary and hepatic metastasis. The small molecular therapeutic prodrug targeting Golgi apparatus could be adapted to multifarious drug delivery systems and disease models, which expanded the application of Golgi targeting tactics in disease treatment.


Asunto(s)
Nanopartículas , Profármacos , Humanos , Profármacos/química , Antraciclinas/metabolismo , Antraciclinas/farmacología , Sistemas de Liberación de Medicamentos , Antibióticos Antineoplásicos/farmacología , Nanopartículas/química , Hipoxia/tratamiento farmacológico , Aparato de Golgi , Línea Celular Tumoral
15.
Bioengineering (Basel) ; 10(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38002426

RESUMEN

The rapid development of computers and robots has seen robotic minimally invasive surgery (RMIS) gradually enter the public's vision. RMIS can effectively eliminate the hand vibrations of surgeons and further reduce wounds and bleeding. However, suitable RMIS and virtual reality-based digital-twin surgery trainers are still in the early stages of development. Extensive training is required for surgeons to adapt to different operating modes compared to traditional MIS. A virtual-reality-based digital-twin robotic minimally invasive surgery (VRDT-RMIS) simulator was developed in this study, and its effectiveness was introduced. Twenty-five volunteers were divided into two groups for the experiment, the Expert Group and the Novice Group. The use of the VRDT-RMIS simulator for face, content, and structural validation training, including the peg transfer module and the soft tissue cutting module, was evaluated. Through subjective and objective evaluations, the potential roles of vision and haptics in robot surgery training were explored. The simulator can effectively distinguish surgical skill proficiency between experts and novices.

16.
Eur J Pharmacol ; 959: 176082, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37783303

RESUMEN

Andrographolide (AGP) exerts pharmacological effects when used for the treatment of cardiovascular disease, but the molecular mechanisms underlying its inhibitory effects on the proliferation and migration of vascular smooth muscle cells (VSMCs) and intimal hyperplasia (IH) are unknown. The proliferation and migration of VSMCs treated with AGP were examined using the CCK-8, flow cytometry, and wound healing assays. Expression levels of proteins related to cell proliferation and apoptosis were quantified. Multi-omics analysis with RNA-seq and metabolome was used to explore the potential molecular mechanism of AGP treatment. Additionally, an in vivo model was established through ligation of the left common carotid artery to identify the therapeutic potential of AGP in IH. Molecular docking and western blotting were performed to verify the mechanism discovered with multi-omics analysis. The results showed that AGP inhibited the proliferation and migration of cultured VSMCs in a dose-dependent manner and alleviated IH-related vascular stenosis. AGP significantly downregulated the protein levels of CDK1, CCND1, and BCL2 and upregulated the protein level of BAX. Gene expression profiles showed a total of 3,298 differentially expressed genes (DEGs) after AGP treatment, of which 1,709 DEGs had upregulated expression and 1,589 DEGs had downregulated expression. KEGG enrichment analysis highlighted the PI3K/AKT signaling pathway, verified with the detection of the activation of PI3K and AKT phosphorylation. Further GO enrichment combined with metabolomics analysis showed that AGP inhibition in cultured VSMCs involved the amino acid metabolic process, and the expression levels of the two key factors PRDM16 and EZH2, identified with PPI and docking analysis, were significantly inhibited by AGP treatment. In conclusion, our study showed that AGP inhibited VSMCs proliferation and migration by suppressing the PI3K/AKT signaling pathway and amino acid metabolism, which, in turn, improved IH.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Músculo Liso Vascular , Hiperplasia/patología , Simulación del Acoplamiento Molecular , Transducción de Señal , Proliferación Celular , Aminoácidos/farmacología , Miocitos del Músculo Liso , Movimiento Celular , Células Cultivadas
17.
Exp Brain Res ; 241(11-12): 2751-2763, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847304

RESUMEN

Ischemic stroke followed by cerebral artery occlusion is a main cause of chronic disability worldwide. Recombinant human brain natriuretic peptide (rhBNP) has been reported to alleviate sepsis-induced cognitive dysfunction and brain I/R injury. However, the function and molecular mechanisms of rhBNP in ischemic brain injury have not been clarified. For establishment of an animal model of ischemic brain injury, C57BL/6 mice were treated with middle cerebral artery occlusion (MCAO) surgery for 1 h and reperfusion for 24 h. After subcutaneous injection of rhBNP into model mice, neurologic deficits were assessed by evaluating behavior of mice according to Longa scoring system, and TTC staining was utilized to determine the brain infarct size of mice. The levels of oxidative stress markers, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA), were detected in hippocampal tissues of mice by corresponding kits. Cell apoptosis in hippocampus tissues was examined by TUNEL staining. Protein levels of antioxidant enzymes (HO-1 and NQO1) in cerebral cortex, apoptotic markers (Bax, Bcl-2, and cleaved caspase), and PI3K/AKT pathway-associated factors in hippocampus were tested by western blot analysis. The results revealed that injection of rhBNP decreased neurologic deficit scores, the percent of brain water content, and infarct volume. Additionally, rhBNP downregulated MDA level, upregulated the levels of SOD, CAT, and GSH in hippocampus of mice, and increased protein levels of HO-1 and NQO1 in the cortex. Cell apoptosis in hippocampus tissues of model mice was inhibited by rhBNP which was shown as the reduced TUNEL-positive cells, the decreased Bax, cleaved caspase-3, and cleaved caspase-9 protein levels, and the enhanced Bcl-2 protein level. In addition, rhBNP treatment activated the PI3K/AKT signaling pathway and upregulated the protein levels of HO-1 and NRF2. Overall, rhBNP activates the PI3K/AKT/HO-1/NRF2 pathway to attenuate ischemic brain injury in mice after MCAO by suppression of cell apoptosis and oxidative stress.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Daño por Reperfusión , Ratones , Humanos , Animales , Péptido Natriurético Encefálico/farmacología , Péptido Natriurético Encefálico/uso terapéutico , Péptido Natriurético Encefálico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Superóxido Dismutasa/metabolismo
18.
Materials (Basel) ; 16(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37629874

RESUMEN

17-4PH martensitic steel is usually used as valve stems in nuclear power plants and it suffers from thermal aging embrittlement due to long-time service in a high-temperature and high-pressure environment. Here, we characterized the evolution of microstructures at the nano-scale in 17-4PH steel by in situ small-angle neutron scattering (SANS) with a thermo-mechanically coupled loading device. The device could set different temperatures and tensile so that an in situ SANS experiment could dynamically characterize the process of nanoscale structural changes. The results showed that with increasing thermal aging time, the ε-Cu phase precipitates and grows as the temperature is 475 °C and 590 °C, and the ε-Cu phase is spherical at 475 °C but became elongated cylinders at 590 °C. Moreover, the loading stress could aid in the growth of the ε-Cu phase at 475 °C.

19.
Phytomedicine ; 118: 154940, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453194

RESUMEN

BACKGROUND AND PURPOSE: Human hepatocellular carcinoma (HCC) features include enhanced glycolysis and elevated lactate concentrations. Accumulation of lactate during metabolism provides a precursor for histone lysine modification. This study was designed to determine whether royal jelly acid (RJA) acts against HCC through the lactate modification pathway. EXPERIMENTAL APPROACH: The effects of RJA on Hep3B and HCCLM3 cell invasion, migration, proliferation, and apoptosis were investigated using cell scratching, colony formation assay, flow cytometry, western blotting, and real-time qPCR, gas chromatography, and RNA sequencing to determine the pathways and molecular targets involved. Tumor xenografts were used to evaluate the anti-HCC effects of RJA in vivo. In-cell Western blotting and expression correlation analysis were applied to confirm the associations between H3 histone lactylation and the antitumor effects of RJA. KEY RESULTS: RJA has good antitumor effects in vivo and in vitro. Multi-omics analysis with metabolome and transcriptome determined that the glycolytic metabolic pathway provided the principle antitumor effect of RJA. Further mechanistic studies showed that RJA inhibited HCC development by interfering with lactate production and inhibiting H3 histone lactylation at H3K9la and H3K14la sites. CONCLUSIONS AND IMPLICATIONS: This study first demonstrated that RJA exerts antitumor effects by affecting the glycolytic pathway. RJA could regulate the lactylation of H3K9la and H3K14la sites on H3 histone using lactate as a clue in the glycolytic pathway. Therefore, the lactylation of H3 histone is vital in exerting the antitumor effect of RJA, providing new evidence for screening and exploring antitumor drug mechanisms in the later stage.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Histonas/metabolismo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Ácido Láctico
20.
J Invest Surg ; 36(1): 2225104, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37357336

RESUMEN

Background: There is no clear description of the evolution of the progression of abdominal adhesions over time.Method: The optimized model was selected using different adhesion scoring systems. Then, this model was used to observe the progression of abdominal adhesions. Visualized observation of abdominal adhesion evolution was performed by laparoscopy and computed tomography. The inflammatory cell infiltration and collagen fibers in adhesion tissues at different times were evaluated by hematoxylin-eosin and picrosirius red staining. RNA sequencing was used to predict potential key targets of abdominal adhesions at different times.Results: The abdominal adhesion model showed the highest reproducibility when it was established using a circular tool and an electric brush. Based on this model, we found that the inflammatory response was activated early in the process of adhesion formation, peaking on day 3 and then gradually decreasing until stabilization on day 7. Collagen and fibronectin formed on day 1 and gradually increased until remaining stable on day 7. In addition, the characteristic changes in the adhesion zone from initial congestion, edema and fragile tissue to later dense and stable tissue could be vividly observed in live mice by laparoscopy and artificial pneumoperitoneum CT. The RNA sequencing results revealed that Hck on day 1, Ndufs3 and Ndufs8 on day 3 and Aif1 on day 7 might play key roles in abdominal adhesion formation.Conclusion: The construction of a standard process for describing the evolution of abdominal adhesions based on an optimized mouse model will help to facilitate subsequent adhesion-related studies.


Asunto(s)
Laparoscopía , Ratones , Animales , Reproducibilidad de los Resultados , Laparoscopía/efectos adversos , Colágeno , Adherencias Tisulares/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA