Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mar Drugs ; 21(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37999383

RESUMEN

Crude polysaccharides were extracted from the white jellyfish (Lobonema smithii) using water extraction and fractionated using ion-exchange chromatography to obtain three different fractions (JF1, JF2, and JF3). The chemical characteristics of four polysaccharides were investigated, along with their anti-inflammatory effect in LPS-stimulated RAW264.7 cells. All samples mainly consisted of neutral sugars with minor contents of proteins and sulphates in various proportions. Glucose, galactose, and mannose were the main constituents of the monosaccharides. The molecular weights of the crude polysaccharides and the JF1, JF2, and JF3 fractions were 865.0, 477.6, 524.1, and 293.0 kDa, respectively. All polysaccharides were able to decrease NO production, especially JF3, which showed inhibitory activity. JF3 effectively suppressed iNOS, COX-2, IL-1ß, IL-6, and TNF-α expression, while IL-10 expression was induced. JF3 could inhibit phosphorylated ERK, JNK, p38, and NF-κB p65. Furthermore, flow cytometry showed the impact of JF3 on inhibiting CD11b and CD40 expression. These results suggest that JF3 could inhibit NF-κB and MAPK-related inflammatory pathways. The structural characterisation revealed that (1→3)-linked glucopyranosyl, (1→3,6)-linked galactopyranosyl, and (1→3,6)-linked glucopyranosyl residues comprised the main backbone of JF3. Therefore, L. smithii polysaccharides exhibit good anti-inflammatory activity and could thus be applied as an alternative therapeutic agent against inflammation.


Asunto(s)
Macrófagos , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/uso terapéutico , Polisacáridos/química , Inflamación/metabolismo , Células RAW 264.7
2.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298441

RESUMEN

The sea cucumber body wall was subjected to enzymatic hydrolysis using papain. The relationship between the enzyme concentration (1-5% w/w protein weight) and hydrolysis time (60-360 min) and the degree of hydrolysis (DH), yield, antioxidant activities, and antiproliferative activity in a HepG2 liver cancer cell line was determined. The surface response methodology showed that the optimum conditions for the enzymatic hydrolysis of sea cucumber were a hydrolysis time of 360 min and 4.3% papain. Under these conditions, a 12.1% yield, 74.52% DH, 89.74% DPPH scavenging activity, 74.92% ABTS scavenging activity, 39.42% H2O2 scavenging activity, 88.71% hydroxyl radical scavenging activity, and 9.89% HepG2 liver cancer cell viability were obtained. The hydrolysate was produced under optimum conditions and characterized in terms of its antiproliferative effect on the HepG2 liver cancer cell line.


Asunto(s)
Holothuria , Neoplasias Hepáticas , Pepinos de Mar , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Hidrólisis , Pepinos de Mar/química , Papaína , Peróxido de Hidrógeno , Neoplasias Hepáticas/tratamiento farmacológico , Línea Celular , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química
3.
Front Nutr ; 8: 772033, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805253

RESUMEN

Viral infections may cause serious human diseases. For instance, the recent appearance of the novel virus, SARS-CoV-2, causing COVID-19, has spread globally and is a serious public health concern. The consumption of healthy, proper, functional, and nutrient-rich foods has an important role in enhancing an individual's immune system and preventing viral infections. Several polysaccharides from natural sources such as algae, bacteria, and fungi have been considered as generally recognized as safe (GRAS) by the US Food and Drug Administration. They are safe, low-toxicity, biodegradable, and have biological activities. In this review, the bioactive polysaccharides derived from various microorganisms, including bacteria, fungi, and algae were evaluated. Antiviral mechanisms of these polysaccharides were discussed. Finally, the potential use of microbial and algal polysaccharides as an antiviral and immune boosting strategy was addressed. The microbial polysaccharides exhibited several bioactivities, including antioxidant, anti-inflammatory, antimicrobial, antitumor, and immunomodulatory activities. Some microbes are able to produce sulfated polysaccharides, which are well-known to exert a board spectrum of biological activities, especially antiviral properties. Microbial polysaccharide can inhibit various viruses using different mechanisms. Furthermore, these microbial polysaccharides are also able to modulate immune responses to prevent and/or inhibit virus infections. There are many molecular factors influencing their bioactivities, e.g., functional groups, conformations, compositions, and molecular weight. At this stage of development, microbial polysaccharides will be used as adjuvants, nutrient supplements, and for drug delivery to prevent several virus infections, especially SARS-CoV-2 infection.

4.
Int J Biol Macromol ; 188: 283-289, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343586

RESUMEN

Oil resistant thermoplastic elastomers (TPE) were prepared using mung bean thermoplastic starch (MTPS) blending with rubbers and sericin. Sericin was incorporated into MTPS as a compatibilizer. MTPS with sericin (MTPSS) was blended with natural rubber (NR) and epoxidized NR (ENR). Sericin at 5% improved the tensile strength (10 MPa), elastic recovery (52%) and morphology of the MTPSS/ENR blend. The mechanical properties, elastic recovery and morphology of the MTPSS5/NR blend were improved by the addition of ENR. The MTPSS/ENR showed palm (28%) and motor oils (8%) swelling resistance because of the hydrophilicity of MTPS and high polarity of ENR. The MTPSS/ENR/NR showed gasoline swelling resistance (104%) because of the hydrophilicity of MTPS and low polarity of NR. FTIR confirmed a reaction between the -NH groups of sericin and the epoxy groups of ENR. This reaction improved the compatibility, mechanical properties, elastic recovery, morphology and oils swelling resistance of the blends.


Asunto(s)
Elastómeros/química , Aceites/efectos adversos , Plásticos/química , Fenómenos Bioquímicos , Compuestos Epoxi/química , Aceites/química , Goma/química , Almidón/química , Temperatura , Resistencia a la Tracción/efectos de los fármacos
5.
Sci Rep ; 11(1): 11813, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083711

RESUMEN

The (R)-phenylacetylcarbinol (PAC) batch biotransformation kinetics for partially purified Candida tropicalis TISTR 5350 pyruvate decarboxylase (PDC) were determined to validate a comprehensive mathematical model in 250 mL scale with 250 mM phosphate buffer/pH 7.0. PDC could convert initial 100/120 mM benzaldehyde/pyruvate substrates to the statistical significantly highest (p ≤ 0.05) maximum PAC concentration (95.8 ± 0.1 mM) and production rate (0.639 ± 0.001 mM min-1). A parameter search strategy aimed at minimizing overall residual sum of square (RSST) based on a system of six ordinary differential equations was applied to PAC biotransformation profiles with initial benzaldehyde/pyruvate concentration of 100/120 and 30/36 mM. Ten important biotransformation kinetic parameters were then elucidated including the zeroth order activation rate constant due to phosphate buffer species (ka) of (9.38 ± < 0.01) × 10-6% relative PDC activity min-1 mM-1. The validation of this model to independent biotransformation kinetics with initial benzaldehyde/pyruvate concentration of 50/60 mM resulted in relatively good fitting with RSST, mean sum of square error (MSE), and coefficient of determination (R2) values of 662, 17.4, and 0.9863, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA