Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Int J Biol Macromol ; 279(Pt 4): 135388, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39255892

RESUMEN

This study investigates the efficacy of a novel tissue-engineered scaffold for nerve repair and functional reconstruction following injury. Utilizing stable jet electrospinning, we fabricated aligned ultrafine fibers from dopamine and poly(L-lactic acid) (PLLA), further developing a biomimetic, oriented, and electroactive scaffold comprising poly(pyrrole) (PPy), polydopamine (PDA), and PLLA through dual in situ polymerizations. The scaffold demonstrated enhanced cell adhesion and reactive oxygen species (ROS) scavenging capabilities and promoted the differentiation of mesenchymal stem cells (MSCs) into Schwann-like cells, essential for nerve regeneration. In vivo assessments revealed significant peripheral nerve regeneration in 10 mm sciatic nerve defects in rats, with observations made 12 weeks post-transplantation. This included facilitated myelination and increased muscle density on the injured side, leading to improved motor function recovery. Our results suggest that the aligned PPy/PDA/PLLA fibrous scaffold offers a promising approach for promoting the differentiation of MSCs into Schwann-like cells conducive to nerve regeneration and represents a significant advancement in nerve repair technologies. This study provides a foundational basis for future research into tissue-engineered solutions for nerve damage, potentially impacting clinical strategies for nerve reconstruction.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Regeneración Nerviosa , Poliésteres , Células de Schwann , Andamios del Tejido , Células Madre Mesenquimatosas/citología , Diferenciación Celular/efectos de los fármacos , Células de Schwann/citología , Animales , Regeneración Nerviosa/efectos de los fármacos , Ratas , Andamios del Tejido/química , Poliésteres/química , Poliésteres/farmacología , Polímeros/química , Indoles/química , Indoles/farmacología , Nervio Ciático/fisiología , Nervio Ciático/lesiones , Ingeniería de Tejidos/métodos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Pirroles
2.
Sci Total Environ ; 947: 174567, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38981542

RESUMEN

Coal spontaneous combustion (CSC) is disturbed by complex downhole conditions. However, current research by scholars mainly focuses on the impact of single conditional disturbances on CSC, which is difficult to comprehensively characterize the oxidation and spontaneous combustion characteristics of granular coal in a complex environment. For this reason, a temperature-programmed gas chromatographer (TP-GC) hyphenated instrument and a C600 high-precision microcalorimeter was used for analysis. The variation rules of derived gas and oxidizing thermodynamic parameters in the coal oxidizing and heating process under stress-heat-gas interaction were obtained. The intrinsic action mechanism of stress-heat-gas interaction to increase the risk of spontaneous combustion of granular coal is described. The results showed that as the level of air leakage (AL) rate increased, the concentration of derived gases in the coal sample showed a "˄"-shaped trend, and the heat release intensity and heat release varied in stages, both reaching their peak at a leakage rate of 150 mL/min. Under different stress conditions, the heat release intensity and heat release of coal also reach their maximum at 150 mL/min, indicating a higher risk of spontaneous combustion of coal at 150 mL/min. As the stress increases, the coal­oxygen reaction is inhibited, leading to a decrease in the concentration of derived gases and a reduction in the average heat release of the coal sample. This indicates that particulate coal is prone to spontaneous combustion when subjected to high air leakage rate and low stress conditions. The experimental results provide a theoretical basis for the prevention of CSC under complex conditions.

3.
Nat Commun ; 15(1): 3301, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671004

RESUMEN

Diphthamide is a modified histidine residue unique for eukaryotic translation elongation factor 2 (eEF2), a key ribosomal protein. Loss of this evolutionarily conserved modification causes developmental defects through unknown mechanisms. In a patient with compound heterozygous mutations in Diphthamide Biosynthesis 1 (DPH1) and impaired eEF2 diphthamide modification, we observe multiple defects in neural crest (NC)-derived tissues. Knockin mice harboring the patient's mutations and Xenopus embryos with Dph1 depleted also display NC defects, which can be attributed to reduced proliferation in the neuroepithelium. DPH1 depletion facilitates dissociation of eEF2 from ribosomes and association with p53 to promote transcription of the cell cycle inhibitor p21, resulting in inhibited proliferation. Knockout of one p21 allele rescues the NC phenotypes in the knockin mice carrying the patient's mutations. These findings uncover an unexpected role for eEF2 as a transcriptional coactivator for p53 to induce p21 expression and NC defects, which is regulated by diphthamide modification.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Histidina , Histidina/análogos & derivados , Antígenos de Histocompatibilidad Menor , Cresta Neural , Factor 2 de Elongación Peptídica , Proteína p53 Supresora de Tumor , Proteínas Supresoras de Tumor , Animales , Cresta Neural/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Ratones , Factor 2 de Elongación Peptídica/metabolismo , Factor 2 de Elongación Peptídica/genética , Histidina/metabolismo , Ribosomas/metabolismo , Mutación , Proliferación Celular , Xenopus laevis , Femenino , Técnicas de Sustitución del Gen , Xenopus , Masculino , Ratones Noqueados
4.
Animals (Basel) ; 14(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38672347

RESUMEN

The aim of this study was to evaluate the effects of a high-energy low-protein (HELP) diet on lipid metabolism and inflammation in the liver and abdominal adipose tissue (AAT) of laying hens. A total of 200 Roman laying hens (120 days old) were randomly divided into two experimental groups: negative control group (NC group) and HELP group, with 100 hens per group. The chickens in the NC group were fed with a basic diet, whereas those in the HELP group were given a HELP diet. Blood, liver, and AAT samples were collected from 20 chickens per group at each experimental time point (30, 60, and 90 d). The morphological and histological changes in the liver and AAT were observed, and the level of serum biochemical indicators and the relative expression abundance of key related genes were determined. The results showed that on day 90, the chickens in the HELP group developed hepatic steatosis and inflammation. However, the diameter of the adipocytes of AAT in the HELP group was significantly larger than that of the NC group. Furthermore, the results showed that the extension of the feeding time significantly increased the lipid contents, lipid deposition, inflammatory parameters, and peroxide levels in the HELP group compared with the NC group, whereas the antioxidant parameters decreased significantly. The mRNA expression levels of genes related to lipid synthesis such as fatty acid synthase (FASN), stearoyl-coA desaturase (SCD), fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor gamma (PPARγ) increased significantly in the liver and AAT of the HELP group, whereas genes related to lipid catabolism decreased significantly in the liver. In addition, the expression of genes related to lipid transport and adipokine synthesis decreased significantly in the AAT, whereas in the HELP group, the expression levels of pro-inflammatory parameters such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß) increased significantly in the liver and AAT. Conversely, the expression level of the anti-inflammatory parameter interleukin-10 (IL-10) decreased significantly in the liver. The results indicated that the HELP diet induced lipid peroxidation and inflammation in the liver and AAT of the laying hens. Hence, these results suggest that chicken AAT may be involved in the development of fatty liver.

5.
Plants (Basel) ; 12(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687358

RESUMEN

Tree peony is a unique oil plant resource in China, and tree peony seed oil is one of the healthy edible oils with a very promising future. However, the main oil tree peony cultivars promoted in China are Paeonia ostii 'Fengdan' and Paeonia rockii. In order to explore new oil tree peony cultivars, 68 tree peony cultivars were investigated and cultivars with oil potential were selected by cluster analysis and grey relational analysis (GRA) in this study. The results demonstrated that the 68 cultivars varied significantly in terms of agronomic characteristics (p < 0.05), with the coefficient of variation in seed yield per plant reaching a high of 75.36%. The oil content of 46 cultivars was higher than 'Fengdan' (20.87 ± 0.26%) and 'Zibanbai' (21.24 ± 1.01%), while the alpha-linolenic acids and total unsaturated fatty acid contents of 26 cultivars were higher than 'Fengdan' (39.79 ± 1.13% and 88.99 ± 0.47%) and 'Zibanbai' (40.51 ± 0.09% and 93.59 ± 0.09%). Finally, three cultivars with better integrated traits were selected by cluster analysis and grey relational analysis (GRA), comprising of 'Changshoule', 'Xianchizhenghui', and 'Yupantuojin'. The contents of alpha-linolenic acids and total unsaturated fatty acids in 'Changshoule' (47.98 ± 0.17% and 93.60 ± 0.08%), 'Xianchizhenghui' (49.44 ± 0.63% and 93.80 ± 0.06%), and 'Yupantuojin' (40.46 ± 0.26% and 93.58 ± 0.06%) were higher than that of 'Fengdan' (39.79 ± 1.13% and 88.99 ± 0.47%). In general, these cultivars can be used as hybrid parental materials for breeding new excellent oil tree peony cultivars.

6.
Adv Sci (Weinh) ; 10(28): e2302519, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37612810

RESUMEN

The development of self-healing conductive hydrogels is critical in electroactive nerve tissue engineering. Typical conductive materials such as polypyrrole (PPy) are commonly used to fabricate artificial nerve conduits. Moreover, the field of tissue engineering has advanced toward the use of products such as hyaluronic acid (HA) hydrogels. Although HA-modified PPy films are prepared for various biological applications, the cell-matrix interaction mechanisms remain poorly understood; furthermore, there are no reports on HA-modified PPy-injectable self-healing hydrogels for peripheral nerve repair. Therefore, in this study, a self-healing electroconductive hydrogel (HASPy) from HA, cystamine (Cys), and pyrrole-1-propionic acid (Py-COOH), with injectability, biodegradability, biocompatibility, and nerve-regenerative capacity is constructed. The hydrogel directly targets interleukin 17 receptor A (IL-17RA) and promotes the expression of genes and proteins relevant to Schwann cell myelination mainly by activating the interleukin 17 (IL-17) signaling pathway. The hydrogel is injected directly into the rat sciatic nerve-crush injury sites to investigate its capacity for nerve regeneration in vivo and is found to promote functional recovery and remyelination. This study may help in understanding the mechanism of cell-matrix interactions and provide new insights into the potential use of HASPy hydrogel as an advanced scaffold for neural regeneration.

7.
ACS Appl Mater Interfaces ; 15(35): 41385-41402, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37606339

RESUMEN

Effective repair and functional recovery of large peripheral nerve deficits are urgent clinical needs. A biofunctional electroactive scaffold typically acts as a "bridge" for the repair of large nerve defects. In this study, we constructed a biomimetic piezoelectric and conductive aligned polypyrrole (PPy)/polydopamine (PDA)/poly-l-lactic acid (PLLA) electrospun fibrous scaffold to improve the hydrophilicity and cellular compatibility of PLLA and restore the weakened piezoelectric effect of PDA, which is beneficial in promoting Schwann cell differentiation and dorsal root ganglion neuronal extension and alignment. The aligned PPy/PDA/PLLA fibrous scaffold bridged the sciatic nerve of Sprague-Dawley rats with a 10 mm deficit, prevented autotomy, and promoted nerve regeneration and functional recovery, thereby activating the calcium and AMP-activated protein kinase signaling pathways. Therefore, electroactive fibrous scaffolds exhibit great potential for neural tissue regeneration.


Asunto(s)
Polímeros , Pirroles , Ratas , Animales , Ratas Sprague-Dawley , Regeneración Nerviosa , Nervio Ciático
9.
Eur J Med Chem ; 259: 115668, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37490800

RESUMEN

The taxane class of microtubule stabilizers are some of the most effective and widely used chemotherapeutics. The anticancer activity of taxanes arises from their ability to induce tubulin assembly by selectively recognizing the curved (c-) conformation in unassembled tubulin as compared to the straight (s-) conformation in assembled tubulin. We first designed and synthesized a series of 3'N-modified taxanes bearing covalent groups. Instead of discovering covalent taxanes, we found a series of non-covalent taxanes 2, in which the 3'N side chain was found to be essential for cytotoxicity due to its role in locking tubulin in the s-conformation. A representative compound bearing an acrylamide moiety (2h) exhibited increased binding affinity to the unassembled tubulin c-conformation and less cytotoxicity than paclitaxel. Further exploration of chemical space around 2h afforded a new series 3, in which derivatives such as 3l bind more tightly to both the s- and c-conformations of tubulin compared to paclitaxel, leading to more efficient promotion of tubulin polymerization and a greater persistence of in vitro efficacy against breast cancer cells after drug washout. Although 3l also had improved in vivo potency as compared to paclitaxel, it was also associated with increased systemic toxicity that required localized, intratumoral injection to observe potent and prolonged antitumor efficacy.


Asunto(s)
Paclitaxel , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Paclitaxel/farmacología , Paclitaxel/química , Taxoides/farmacología , Taxoides/química , Microtúbulos
10.
Curr Pharm Biotechnol ; 24(10): 1335-1342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36503460

RESUMEN

BACKGROUND: Lung cancer is a major threat to public health and remains difficult to treat. Repositioning of existing drugs has emerged as a therapeutic strategy in lung cancer. Clinically, low-dose montelukast has been used to treat asthma. OBJECTIVE: We evaluated the potential of using montelukast to treat lung cancer. METHODS: Migration was detected using wound-healing and Transwell assays, the expression of CysLT1 using western blotting, and subcellular localization of CysLT1 using immunofluorescence. CRISPR/Cas9 technology was used to further investigate the function of CysLT1. RESULTS: Subcellular localization staining showed that the CysLT1 distribution varied in murine and human lung cancer cell lines. Furthermore, montelukast suppressed CysLT1 expression in lung cancer cells. The treated cells also showed weaker migration ability compared with control cells. Knockout of CysLT1 using CRISPR/Cas9 editing in A549 cells further impaired the cell migration ability. CONCLUSION: Montelukast inhibits the migration of lung cancer cells by suppressing CysLT1 expression, demonstrating the potential of using CysLT1 as a therapeutic target in lung cancer.


Asunto(s)
Antagonistas de Leucotrieno , Neoplasias Pulmonares , Humanos , Animales , Ratones , Antagonistas de Leucotrieno/farmacología , Antagonistas de Leucotrieno/uso terapéutico , Acetatos/farmacología , Acetatos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Movimiento Celular
11.
Org Biomol Chem ; 21(1): 153-162, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36472095

RESUMEN

The disordered tubulin C-terminal tail (CTT), which possesses a higher degree of heterogeneity, is the target for the interaction of many proteins and cellular components. Compared to the seven well-described binding sites of microtubule-targeting agents (MTAs) that localize on the globular tubulin core, tubulin CTT is far less explored. Therefore, tubulin CTT can be regarded as a novel site for the development of MTAs with distinct biochemical and cell biological properties. Here, we designed and synthesized linear and cyclic peptides containing multiple arginines (RRR), which are complementary to multiple acidic residues in tubulin CTT. Some of them showed moderate induction and promotion of tubulin polymerization. The most potent macrocyclic compound 1f was found to bind to tubulin CTT and thus exert its bioactivity. Such RRR containing compounds represent a starting point for the discovery of tubulin CTT-targeting agents with therapeutic potential.


Asunto(s)
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Antineoplásicos/farmacología , Sitios de Unión , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/metabolismo
12.
Int J Biol Macromol ; 222(Pt B): 1948-1962, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202331

RESUMEN

Poor wound healing is a very common clinical problem, so far there is no completely satisfactory treatment. Electropsun nanofibrous wound dressings may provide an ideal structure to improve wound healing. Therefore, development of nanofibrous wound dressings with rapid hemostasis, antibacterial and tissue regenerative multi-functions has been a hotspot in the field of skin tissue engineering. In this work, polydopamine (PDA) and polypyrrole (PPy) were uniformly coated onto the surface of poly(l-lactide) (PLLA) nanofibers by in-situ polymerization, forming a novel PPy/PDA/PLLA three-layer core-shell structure. The homogeneously coated PPy and PDA two layers could significantly increase the hydrophilicity, conductivity, near-infrared photothermal antibacterial property, the speed of wound hemostasis, antioxidant capacity and reactive oxygen species (ROS) scavenging capacity, respectively. In addition, PPy/PDA/PLLA nanofibers showed good biocompatibility. Rat wound healing model confirmed that PPy/PDA/PLLA nanofibers could significantly accelerate wound repair in vivo. Thus, this novel nanofibrous wound dressing is a promising candidate for clinical wound healing.


Asunto(s)
Nanofibras , Ratas , Animales , Nanofibras/química , Polímeros/química , Pirroles/farmacología , Cicatrización de Heridas , Antibacterianos
13.
J Biol Chem ; 298(8): 102225, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780836

RESUMEN

Ephrin-B signaling has been implicated in many normal and pathological processes, including neural crest development and tumor metastasis. We showed previously that proteolysis of ephrin-B ligands by the disintegrin metalloprotease ADAM13 is necessary for canonical Wnt signal activation and neural crest induction in Xenopus, but it was unclear if these mechanisms are conserved in mammals. Here, we report that mammalian ADAM9 cleaves ephrin-B1 and ephrin-B2 and can substitute for Xenopus ADAM13 to induce the neural crest. We found that ADAM9 expression is elevated in human colorectal cancer (CRC) tissues and that knockdown (KD) of ADAM9 inhibits the migration and invasion of SW620 and HCT116 CRC cells by reducing the activity of Akt kinase, which is antagonized by ephrin-Bs. Akt is a signaling node that activates multiple downstream pathways, including the Wnt and mTOR pathways, both of which can promote CRC cell migration/invasion. Surprisingly, we also found that KD of ADAM9 downregulates Wnt signaling but has negligible effects on mTOR signaling in SW620 cells; in contrast, mTOR activity is suppressed while Wnt signaling remains unaffected by ADAM9 KD in HCT116 cells. These results suggest that mammalian ADAM9 cleaves ephrin-Bs to derepress Akt and promote CRC migration and invasion; however, the signaling pathways downstream of Akt are differentially regulated by ADAM9 in different CRC cell lines, reflecting the heterogeneity of CRC cells in responding to manipulations of upstream Akt regulators.


Asunto(s)
Proteínas ADAM/metabolismo , Neoplasias Colorrectales , Efrinas , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/patología , Humanos , Ligandos , Mamíferos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloproteasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Vía de Señalización Wnt
14.
ChemMedChem ; 17(11): e202100778, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35274459

RESUMEN

Although the farnesoid X receptor (FXR) has been regarded as a promising drug target for metabolic diseases as well as anti-inflammatory, antitumor and antiviral actions, the antagonism by FXR ligands are still underrepresented in current FXR targeted therapies. In this study, we discovered selective FXR antagonists through structure optimization from the polyoxygenated chalcone scaffold. The selective antagonist 6 p [2-methoxy-2'-hydroxy-4'-(4''-methoxy-4''-oxo-E-crotonyl) chalcone] is not only inhibitory toward non-small-cell lung cancer (NSCLC) cell proliferation in an FXR-dependent manner, but is also active in metastasis models. Taken together, this chalcone-based FXR antagonist has the potential for the targeted therapy of NSCLC in which FXR is highly expressed.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Chalcona , Chalconas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proliferación Celular , Chalconas/farmacología , Humanos , Neoplasias Pulmonares/metabolismo , Receptores Citoplasmáticos y Nucleares
15.
Food Chem ; 377: 131958, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34990951

RESUMEN

The biosynthesis of flavones has drawn considerable attention. However, the presence of flavones and their biosynthesis in tomato (Solanum lycopersicum) remain unclear. Here, we confirmed that flavones are present in MicroTom tomato and unexpectedly found that a tomato polyphenol oxidase (SlPPO F) possesses a flavone synthase-like activity and catalyzes the conversion of eriodictyol to luteolin without the need for any cofactor. SlPPO F showed a similar Km value to that of other polyphenol oxidases, and could be inhibited by ascorbic acid. The flavone synthase-like activity of SlPPO F exhibited strict substrate specificity and only accepted flavanones with two hydroxyl groups (3' and 4') on the B ring as substrates. SlPPO F showed higher catalytic efficiency and better thermostability than type I flavone synthase from Apium graveolens, suggesting its possible application in enzyme engineering. In summary, we identified flavones in tomato and unraveled a polyphenol oxidase exhibiting flavone synthase-like activity.


Asunto(s)
Flavonas , Solanum lycopersicum , Catecol Oxidasa/genética , Solanum lycopersicum/genética , Especificidad por Sustrato
16.
Front Immunol ; 12: 795741, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925381

RESUMEN

Glycan-masking the vaccine antigen by mutating the undesired antigenic sites with an additional N-linked glycosylation motif can refocus B-cell responses to desired epitopes, without affecting the antigen's overall-folded structure. This study examined the impact of glycan-masking mutants of the N-terminal domain (NTD) and receptor-binding domain (RBD) of SARS-CoV-2, and found that the antigenic design of the S protein increases the neutralizing antibody titers against the Wuhan-Hu-1 ancestral strain and the recently emerged SARS-CoV-2 variants Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Our results demonstrated that the use of glycan-masking Ad-S-R158N/Y160T in the NTD elicited a 2.8-fold, 6.5-fold, and 4.6-fold increase in the IC-50 NT titer against the Alpha (B.1.1.7), Beta (B.1.351) and Delta (B.1.617.2) variants, respectively. Glycan-masking of Ad-S-D428N in the RBD resulted in a 3.0-fold and 2.0-fold increase in the IC-50 neutralization titer against the Alpha (B.1.1.7) and Beta (B.1.351) variants, respectively. The use of glycan-masking in Ad-S-R158N/Y160T and Ad-S-D428N antigen design may help develop universal COVID-19 vaccines against current and future emerging SARS-CoV-2 variants.


Asunto(s)
Antígenos Virales/inmunología , COVID-19/inmunología , Epítopos/inmunología , Dominios y Motivos de Interacción de Proteínas/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adenoviridae/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Femenino , Ingeniería Genética , Vectores Genéticos/genética , Humanos , Inmunización , Ratones , Pruebas de Neutralización , Polisacáridos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Relación Estructura-Actividad
17.
Development ; 148(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33318149

RESUMEN

Mutations in the RNA helicase DDX3 have emerged as a frequent cause of intellectual disability in humans. Because many individuals carrying DDX3 mutations have additional defects in craniofacial structures and other tissues containing neural crest (NC)-derived cells, we hypothesized that DDX3 is also important for NC development. Using Xenopus tropicalis as a model, we show that DDX3 is required for normal NC induction and craniofacial morphogenesis by regulating AKT kinase activity. Depletion of DDX3 decreases AKT activity and AKT-dependent inhibitory phosphorylation of GSK3ß, leading to reduced levels of ß-catenin and Snai1: two GSK3ß substrates that are crucial for NC induction. DDX3 function in regulating these downstream signaling events during NC induction is likely mediated by RAC1, a small GTPase whose translation depends on the RNA helicase activity of DDX3. These results suggest an evolutionarily conserved role of DDX3 in NC development by promoting AKT activity, and provide a potential mechanism for the NC-related birth defects displayed by individuals harboring mutations in DDX3 and its downstream effectors in this signaling cascade.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Animales , Cartílago/embriología , Cartílago/metabolismo , Embrión no Mamífero/metabolismo , Cara/embriología , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Morfogénesis/genética , Fosforilación , Estabilidad Proteica , Cráneo/embriología , Cráneo/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Vía de Señalización Wnt , Xenopus/genética , beta Catenina/metabolismo , Proteína de Unión al GTP rac1/metabolismo
18.
J Proteomics ; 232: 104068, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33278663

RESUMEN

Neuroblastoma is the second most common pediatric cancer involving the peripheral nervous system in which stage IVS metastatic tumors regress due to spontaneous differentiation. 13-cis retinoic acid (13-cis RA) is currently used in the clinic for its differentiation effects and although it improves outcomes, relapse is seen in half of high-risk patients. Combinatorial therapies have been shown to be more effective in oncotherapy and since cathepsin inhibition reduces tumor growth, we explored the potential of coupling 13-cis RA with a cathepsin inhibitor (K777) to enhance therapeutic efficacy against neuroblastoma. Shotgun proteomics was used to identify proteins affected by K777 and dual (13-cis RA/K777) treatment in neuroblastoma SK-N-SH cells. Cathepsin inhibition was more effective in increasing proteins involved in neuronal differentiation and neurite outgrowth than 13-cis RA alone, but the combination of both treatments enhanced the neuronal differentiation effect. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of more accurate diagnostic markers and more effective treatments. In this study, we established a differentiation proteomic map of SK-N-SH cells treated with a cathepsin inhibitor (K777) and K777/13-cis RA (dual). Bioinformatic analysis revealed these treatments enhanced neuronal differentiation and axonogenesis pathways. The most affected proteins in these pathways may become valuable biomarkers of efficacy of drugs designed to enhance differentiation of neuroblastoma [1].


Asunto(s)
Isotretinoína , Neuroblastoma , Catepsinas , Diferenciación Celular , Niño , Humanos , Neuroblastoma/tratamiento farmacológico , Proteómica , Tretinoina/farmacología
19.
Cancer Manag Res ; 12: 5803-5811, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765083

RESUMEN

BACKGROUND: Metformin may exert the anticancer effect on multiple types of cancers and some potential mechanisms have been suggested. Our study was designed to determine the effect of metformin on the cell autophagy and autophagic flux via the AMPK-mTOR signaling pathway in human hepatocellular carcinoma (HCC) cells. METHODS: MHCC97H and HepG2 cell lines were cultured and treated without and with metformin at various concentrations (2, 5, 10 and 20 mM) for 48 h. Then, 10 mM was determined as the optimal concentration and the HCC cells were treated with metformin for 12, 24, 48, and 72 h. MTT assay was used to assess the cell viability and Western blotting was used to determine the expression of proteins (LC3-II, p62, phospho-AMPKα, phospho-mTOR, mTOR, phospho-p70 S6 Kinase, p70 S6 Kinase, PARP1, Caspase-9 and Caspase-3). Autophagy inhibitor 3-methyladenine, EGFP-LC3 and mCherry-GFP-LC3B plasmid transfection were used for further study. RESULTS: Metformin inhibited significantly the viability of MHCC97H and HepG2 cells in a dose- and time-dependent manner. For the apoptotic properties, activation of Caspase-9 and Caspase-3 and PARP cleavage were not observed after treatment with metformin. MHCC97H cells were transfected with a EGFP-LC3 plasmid and treatment with metformin could lead to the increased level of LC3-II and decreased level of p62. In metformin-induced autophagy, AMPK expression was activated, and the phosphorylation levels of mTOR and p70 S6 Kinase were inhibited. Metformin treatment and mCherry-GFP-LC3B plasmid transfection showed that metformin could induce the autophagic flux. 3-Methyladenine (3-MA) partly abolished this effect. CONCLUSION: Metformin could induce the autophagy, autophagic flux, and activate the AMPK-mTOR signaling pathway in human HCC cells.

20.
Dis Markers ; 2020: 7174062, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695243

RESUMEN

BACKGROUND: Insulin receptor substrate 1 (IRS-1) is an important molecule of the insulin signal transduction pathway and has been associated with the occurrence and development of many tumors, including hepatocellular carcinoma (HCC). Our study was designed to determine the expression and significance of IRS-1 in human HCC. METHODS: Two hundred and forty specimens were drawn from 140 patients, including 100 HCC tissues and 100 paracancerous (PC) tissues from 100 HCC patients, 20 liver cirrhosis (LC) tissues from 20 LC patients, and 20 chronic hepatitis (CH) tissues from 20 CH patients. Baseline and pathological characteristics were included, and the expression of IRS-1 was examined by immunohistochemical (IHC) staining. Binary logistic regression model calculation was used for multivariate analysis. RESULTS: The total positive rates of IRS-1 expression were 41.0%, 17.0%, 15.0%, and 10.0% in HCC, PC, LC and CH tissues, respectively. IRS-1-positive signals were brown in color and located in the nucleus and cytoplasm. Compared with PC, LC, and CH tissues, a significantly increased expression was observed in human HCC tissues (P < 0.001, P = 0.028, and P = 0.008). Eight of the total 240 specimens had the strong immunostaining of IRS-1 expression, and all of them were HCC tissues. After control of the age, gender, and HBV and HCV infection, IRS-1 expression was independently associated with the diagnosis of HCC (OR 6.60, 95% CI 2.243-19.425, P = 0.001). CONCLUSIONS: Positive expression of IRS-1 in HCC was increased significantly and may play an important role in the occurrence and development of human HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Neoplasias Hepáticas/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Femenino , Hepatitis B/metabolismo , Hepatitis C/metabolismo , Hepatitis Crónica/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/patología , Modelos Logísticos , Masculino , Persona de Mediana Edad , Lesiones Precancerosas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA