Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Am Chem Soc ; 146(11): 7543-7554, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38469664

RESUMEN

Hypoxia is characteristic of the tumor microenvironment, which is correlated with resistance to photodynamic therapy (PDT), radiotherapy, chemotherapy, and immunotherapy. Catalase is potentially useful to catalyze the conversion of endogenous H2O2 to O2 for hypoxia reversion. However, the efficient delivery of catalase into the hypoxia regions of tumors is a huge challenge. Here, we report the self-assembly of ultra-acid-sensitive polymer conjugates of catalase and albumin into nanomicelles that are responsive to the acidic tumor microenvironment. The immunogenicity of catalase is mitigated by the presence of albumin, which reduces the cross-linking of catalase with B cell receptors, resulting in improved pharmacokinetics. The ultra acid sensitivity of the nanomicelles makes it possible to efficiently escape the lysosomal degradation after endocytosis and permeate into the interior of tumors to reverse hypoxia in vitro and in vivo. In mice bearing triple-negative breast cancer, the nanomicelles loaded with a photosensitizer effectively accumulate and penetrate into the whole tumors to generate a sufficient amount of O2 to reverse hypoxia, leading to enhanced efficacy of PDT without detectable side effects. These findings provide a general strategy of self-assembly to design low-immunogenic ultra-acid-sensitive comicelles of protein-polymer conjugates to reverse tumor hypoxia, which sensitizes tumors to PDT.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Ratones , Fotoquimioterapia/métodos , Catalasa , Polímeros/farmacología , Peróxido de Hidrógeno/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Hipoxia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Albúminas , Línea Celular Tumoral , Microambiente Tumoral
2.
Med Image Anal ; 94: 103154, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552527

RESUMEN

Pancreatic cancer (PC) is a severely malignant cancer variant with high mortality. Since PC has no obvious symptoms, most PC patients are belatedly diagnosed at advanced disease stages. Recently, artificial intelligence (AI) approaches have demonstrated promising prospects for early diagnosis of pancreatic cancer. However, certain non-causal factors (such as intensity and texture appearance variations, also called confounders) tend to induce spurious correlation with PC diagnosis. This undermines the generalization performance and the clinical applicability of the AI-based PC diagnosis approaches. Therefore, we propose a causal intervention based automated method for pancreatic cancer diagnosis with contrast-enhanced computerized tomography (CT) images, where a confounding effects reduction scheme is developed for alleviating spurious correlations to achieve unbiased learning, thereby improving the generalization performance. Specifically, a continuous image generation strategy was developed to simulate wide variations of intensity differences caused by imaging heterogeneities, where Monte Carlo sampling is added to further enhance the continuity of simulated images. Then, to enhance the pancreatic texture variability, a texture diversification method was introduced in conjunction with gradient-based data augmentation. Finally, a causal intervention strategy was proposed to alleviate the adverse confounding effects by decoupling the causal and non-causal factors and combining them randomly. Extensive experiments showed remarkable diagnosis performance on a cross-validation dataset. Also, promising generalization performance with an average accuracy of 0.87 was attained on three independent test sets of a total of 782 subjects. Therefore, the proposed method shows high clinical feasibility and applicability for pancreatic cancer diagnosis.


Asunto(s)
Inteligencia Artificial , Neoplasias Pancreáticas , Humanos , Tomografía Computarizada por Rayos X , Neoplasias Pancreáticas/diagnóstico por imagen
3.
J Biophotonics ; 17(3): e202300405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38010214

RESUMEN

A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non-invasively, and label-free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily-pigmented and moderately-pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately-pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down-regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses.


Asunto(s)
Anomalías Craneofaciales , Melanoma , Células Neoplásicas Circulantes , Humanos , Ratones , Animales , Melanoma/diagnóstico por imagen , Melanoma/patología , Melaninas , Citometría de Flujo , Células Neoplásicas Circulantes/patología , Metástasis de la Neoplasia
4.
Eur Radiol Exp ; 7(1): 74, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019353

RESUMEN

BACKGROUND: We tested the hypothesis that radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) promotes tumor cell release and explored a method for reducing these effects. METHODS: A green fluorescent protein-transfected orthotopic HCC model was established in 99 nude mice. In vivo flow cytometry was used to monitor circulating tumor cell (CTC) dynamics. Pulmonary fluorescence imaging and pathology were performed to investigate lung metastases. First, the kinetics of CTCs during the periablation period and the survival rate of CTCs released during RFA were investigated. Next, mice were allocated to controls, sham ablation, or RFA with/without hepatic vessel blocking (ligation of the portal triads) for evaluating the postablation CTC level, lung metastases, and survival over time. Moreover, the kinetics of CTCs, lung metastases, and mice survival were evaluated for RFA with/without ethanol injection. Pathological changes in tumors and surrounding parenchyma after ethanol injection were noted. Statistical analysis included t-test, ANOVA, and Kaplan-Meier survival curves. RESULTS: CTC counts were 12.3-fold increased during RFA, and 73.7% of RFA-induced CTCs were viable. Pre-RFA hepatic vessel blocking prevented the increase of peripheral CTCs, reduced the number of lung metastases, and prolonged survival (all p ≤ 0.05). Similarly, pre-RFA ethanol injection remarkably decreased CTC release during RFA and further decreased lung metastases with extended survival (all p ≤ 0.05). Histopathology revealed thrombus formation in blood vessels after ethanol injection, which may clog tumor cell dissemination during RFA. CONCLUSION: RFA induces viable tumor cell dissemination, and pre-RFA ethanol injection may provide a prophylactic strategy to reduce this underestimated effect. RELEVANCE STATEMENT: RFA for HCC promotes viable tumor cell release during ablation, while ethanol injection can prevent RFA induced tumor cell release. KEY POINTS: • RFA induced the release of viable tumor cells during the ablation procedure in an animal model. • Hepatic vessel blocking can suppress tumor cells dissemination during RFA. • Ethanol injection can prevent RFA-induced tumor cell release, presumably because of the formation of thrombosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma Hepatocelular/cirugía , Ratones Desnudos , Neoplasias Hepáticas/cirugía , Modelos Animales de Enfermedad , Etanol
5.
Adv Healthc Mater ; 12(31): e2301890, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37669689

RESUMEN

Nanomedicines are potentially useful for targeted cancer chemotherapy; however, it is difficult to design nanomedicines with controllable structures and functions to overcome a series of biological and pathological barriers to efficiently kill cancer cells in vivo. Here, this work reports in situ growth of dual-acid-sensitive poly(tertiary amine)-doxorubicin conjugates from albumin to form dual-acid-sensitive albumin-poly(tertiary amine)-doxorubicin conjugates that self-assemble into nanospheres and nanoworms in a controlled manner. Both nanospheres and nanoworms rapidly dissociate into positively-charged unimers at pH < 6.9 and quickly releases the conjugated drug of doxorubicin at pH < 5.6, leading to enhanced penetration in tumor cell spheroids as well as improved uptake and cytotoxicity to tumor cells at pH < 6.9. Notably, nanoworms are less taken up by endothelial cells than nanospheres and doxorubicin, leading to improved pharmacokinetics. In a mouse model of triple negative breast cancer, nanoworms accumulate and penetrate into tumors more efficiently than nanospheres and doxorubicin, leading to enhanced tumor accumulation and penetration. As a result, nanoworms outperform nanospheres and doxorubicin in suppressing tumor growth and elongating the animal survival time, without observed side effects. These findings demonstrate that intelligent nanoworms with spatiotemporally programmed dual-acid-sensitive properties are promising as next-generation nanomedicines for targeted cancer chemotherapy.


Asunto(s)
Células Endoteliales , Neoplasias , Animales , Ratones , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Albúminas , Aminas , Línea Celular Tumoral
6.
Opt Lett ; 48(15): 3849-3852, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527065

RESUMEN

Interstitial photodynamic therapy (I-PDT), which utilizes optical fibers to deliver light for photosensitizer excitation and the elimination of penetration depth limitation, is a promising modality in the treatment of deeply seated tumors or thick tumors. Currently, the excitation domain of the optical fiber is extremely limited, restricting PDT performance. Here, we designed and fabricated a biocompatible polymer optical fiber (POF) with a strongly scattering spherical end (SSSE) for I-PDT applications, achieving an increased excitation domain and consequently excellent in vitro and in vivo therapeutical outcomes. The POF, which was drawn using a simple thermal drawing method, was made of polylactic acid, ensuring its superior biocompatibility. The excitation domains of POFs with different ends, including flat, spherical, conical, and strongly scattering spherical ends, were analyzed and compared. The SSSE was achieved by introducing nanopores into a spherical end, and was further optimized to achieve a large excitation domain with an even intensity distribution. The optimized POF enabled outstanding therapeutic performance of I-PDT in in vitro cancer cell ablation and in vivo anticancer therapy. All of its notable optical features, including low transmission/bending loss, superior biocompatibility, and a large excitation domain with an even intensity distribution, endow the POF with great potential for clinical I-PDT applications.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fibras Ópticas , Polímeros , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología
7.
Nat Commun ; 14(1): 4628, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532754

RESUMEN

Chemotherapy remains as the first-choice treatment option for triple-negative breast cancer (TNBC). However, the limited tumor penetration and low cellular internalization efficiency of current nanocarrier-based systems impede the access of anticancer drugs to TNBC with dense stroma and thereby greatly restricts clinical therapeutic efficacy, especially for TNBC bone metastasis. In this work, biomimetic head/hollow tail nanorobots were designed through a site-selective superassembly strategy. We show that nanorobots enable efficient remodeling of the dense tumor stromal microenvironments (TSM) for deep tumor penetration. Furthermore, the self-movement ability and spiky head markedly promote interfacial cellular uptake efficacy, transvascular extravasation, and intratumoral penetration. These nanorobots, which integrate deep tumor penetration, active cellular internalization, near-infrared (NIR) light-responsive release, and photothermal therapy capacities into a single nanodevice efficiently suppress tumor growth in a bone metastasis female mouse model of TNBC and also demonstrate potent antitumor efficacy in three different subcutaneous tumor models.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Femenino , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Biomimética , Línea Celular Tumoral , Fototerapia , Microambiente Tumoral
8.
World J Urol ; 41(9): 2319-2326, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37419973

RESUMEN

PURPOSE: The aim of this study was to investigate the overall sensitivity and specificity of indocyanine green (ICG)-near-infrared (NIR) fluorescence imaging in the detection of sentinel lymph node metastasis (SLNM) in penile cancer. METHODS: We searched PubMed, Embase, Web of Science, Scopus, and the Cochrane Library databases to identify manuscripts where ICG was intravenously administered prior to or during penile cancer surgery, with no restriction on language or publication status. The results extracted are presented as forest plots. RESULTS: Seven studies were included in the analysis. The median sensitivity and specificity of ICG-NIR imaging for SLNM detection were 100 and 4%, respectively; the pooled sensitivity was 100.0% (95% confidence interval [CI] 97.0-100.0) and specificity was 2.0% (95% CI 1.0-3.0). There was no significant difference in the diagnostic results between different injection sites and doses in each experimental group. CONCLUSION: To our knowledge, this meta-analysis is the first to summarize the diagnostic performance of ICG-NIR imaging for SLNM detection in penile cancer. ICG is sensitive in the imaging of SLN tissue, which can consequently improve the accuracy of lymph node detection. However, the specificity is very low.


Asunto(s)
Linfadenopatía , Neoplasias del Pene , Ganglio Linfático Centinela , Masculino , Humanos , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Verde de Indocianina , Ganglio Linfático Centinela/patología , Biopsia del Ganglio Linfático Centinela/métodos , Neoplasias del Pene/patología , Ganglios Linfáticos/patología , Imagen Óptica/métodos , Colorantes
9.
Cytometry A ; 103(9): 723-731, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37276218

RESUMEN

Breast cancer is the most common cancer, and triple-negative breast cancer (TNBC) has the highest metastasis and mortality rate among all breast cancer subtypes. Rujifang is a traditional Chinese medicine formula with many years of clinical application in breast cancer treatment. Here, we aim to investigate the effects of Rujifang on circulating tumor cell (CTC) dynamics and the tumor microenvironment in a ZsGreen/luciferase double-labeled TNBC orthotopic model. We report that the number of CTCs monitored by in vivo flow cytometry (IVFC) strongly correlates with disease progression. Rujifang treatment decreased the number of CTCs and suppressed the distant metastasis of TNBC. Moreover, immunofluorescence analysis revealed that Rujifang treatment could affect the tumor microenvironment by downregulating Kindlin-1, which has been reported to promote metastasis of TNBC. Our study provides evidence of the anti-metastatic effect of Rujifang against TNBC in an animal model using fluorescent cell lines. The results suggest the potential therapeutic value of Rujifang as an anti-metastatic drug, however, further clinical trials are needed to validate these findings in humans.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Citometría de Flujo , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Proliferación Celular , Microambiente Tumoral
10.
J Biophotonics ; 16(9): e202300135, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263969

RESUMEN

Flow cytometry (FC) is a versatile tool with excellent capabilities to detect and measure multiple characteristics of a population of cells or particles. Notable advancements in in vivo photoacoustic FC, coherent Raman FC, microfluidic FC, and so on, have been achieved in the last two decades, which endows FC with new functions and expands its applications in basic research and clinical practice. Advanced FC broadens the tools available to researchers to conduct research involving cancer detection, microbiology (COVID-19, HIV, bacteria, etc.), and nucleic acid analysis. This review presents an overall picture of advanced flow cytometers and provides not only a clear understanding of their mechanisms but also new insights into their practical applications. We identify the latest trends in this area and aim to raise awareness of advanced techniques of FC. We hope this review expands the applications of FC and accelerates its clinical translation.


Asunto(s)
COVID-19 , Humanos , Citometría de Flujo
11.
J Exp Clin Cancer Res ; 42(1): 93, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081505

RESUMEN

Malignant breast cancer (BC) remains incurable mainly due to the cancer cell metastasis, which is mostly related to the status of Estrogen receptor alpha (ERα). However, our understanding of the mechanisms through which ERα regulates cancer cell metastasis remains limited. Here we identified a miR-29a-PTEN-AKT axis as a downstream signaling pathway of ERα governing breast cancer progression and metastasis. Two estrogen response element (ERE) half sites were identified in the promoter and enhancer regions of miR-29a, which mediated transcriptional regulation of miR-29a by ERα. Low level of miR-29a showed association with reduced metastasis and better survival in ERα+ luminal subtype of BC. In contrast, high level of miR-29a was detected in ERα- triple negative breast cancer (TNBC) in association with distant metastasis and poor survival. miR-29a overexpression in BC tumors increased the number of circulating tumor cells and promoted lung metastasis in mice. Targeted knockdown of miR-29a in TNBC cells in vitro or administration of a nanotechnology-based anti-miR-29a delivery in TNBC tumor-bearing mice in vivo suppressed cellular invasion, EMT and lung metastasis. PTEN was identified as a direct target of miR-29a, inducing EMT and metastasis via AKT signaling. A small molecular inhibitor of AKT attenuated miR-29a-induced EMT. These findings demonstrate a novel mechanism responsible for ERα-regulated breast cancer metastasis, and reveal the combination of ERα status and miR-29a levels as a new risk indicator in BC.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Femenino , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Neoplasias Pulmonares/genética , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proliferación Celular , Melanoma Cutáneo Maligno
12.
Biomater Sci ; 11(8): 2935-2949, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36912088

RESUMEN

The nucleolus is a newly developed and promising target for cancer diagnosis and therapy, and its imaging is extremely significant for fundamental research and clinical applications. The unique feature, i.e., high resolution at the subcellular level, makes the fluorescence imaging method a powerful tool for nucleolus imaging. However, the fluorescence imaging of nucleoli in living cells is restricted by the limited availability of fluorescent agents with specific nucleolus-targeting capability and superior biocompatibility. Here, promising carbon dots (CDs) with intrinsic nucleolus-targeting capability were synthesized, characterized and employed for dynamic fluorescence imaging of nucleoli in living cells. The CDs exhibit a high fluorescence quantum yield of 0.2, excellent specificity and photostability, and superior biocompatibility, which were systematically demonstrated at the gene, cellular and animal levels and confirmed by their biological effects on embryonic development. All these features enabled CDs to light up the nucleoli for a long time with a high signal-to-noise ratio in living cells and monitor the nucleolar dynamics of malignant cells in camptothecin (CPT) based chemotherapy. Their excellent optical and biological features as well as general nucleolus-targeting capability endow CDs with great potential for future translational research.


Asunto(s)
Carbono , Puntos Cuánticos , Animales , Imagen Óptica , Colorantes Fluorescentes
13.
Med Image Anal ; 86: 102774, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36842410

RESUMEN

Pancreatic cancer is a highly malignant cancer type with a high mortality rate. As no obvious symptoms are associated with this cancer type, most of the diagnoses are made when the patients are already in a late stage. In this work, we propose an automated method for effective early diagnosis of pancreatic cancer based on multiple instance learning with contrast-enhanced CT images. In this method, diagnosis stability and generalizability were improved through shape normalization based on anatomical structures as well as instance-level contrastive learning. Specifically, anatomically-guided shape normalization were developed to reconstruct the pancreatic regions of interest by spatial transformations, account for larger tumor parts in these regions, and hence enhance the extraction of pancreatic features. Moreover, instance-level contrastive learning was employed to aggregate different types of tumor features within the multiple instance learning framework. This learning approach can maintain the tumor feature integrity and enhance the diagnosis stability. Finally, a balance-adjustment strategy was designed to alleviate the class imbalance problem caused by the scarcity of tumor samples. Extensive experimental results demonstrated remarkable performance of our method when conducted cross-validation on an in-house dataset with 310 patients and independent test on two unseen datasets (a private test set with 316 and a publicly-available test set with 281). The proposed strategies also led to significant improvements in generalizability. Besides, the clinical significance of the proposed method was further verified through two independent test results in which tumors smaller than 2 cm in diameter were identified at accuracies of 80.9% and 90.1%, respectively. Overall, our method provides a potentially successful tool for early diagnosis of pancreatic cancer. Our source codes will be released at https://github.com/SJTUBME-QianLab/MIL_PAdiagnosis.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Páncreas , Aprendizaje , Relevancia Clínica , Neoplasias Pancreáticas
14.
Aging Dis ; 14(1): 219-228, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36818558

RESUMEN

Unhindered transportation of substances in the brain extracellular space (ECS) is essential for maintaining brain function. Regulation of transportation is a novel strategy for treating ECS blockage-related brain diseases, but few techniques have been developed to date. In this study, we established a novel approach for accelerating the drainage of brain interstitial fluid (ISF) in the ECS using minimally invasive surgery, in which a branch of the external carotid artery is separated and implanted epidurally (i.e., epidural arterial implantation [EAI]) to promote a pulsation effect on cerebrospinal fluid (CSF) in the frontoparietal region. Tracer-based magnetic resonance imaging was used to evaluate the changes in ISF drainage in rats 7 and 15 days post-EAI. The drainage of the traced ISF from the caudate nucleus to ipsilateral cortex was significantly accelerated by EAI. Significant increases in the volume fraction of the ECS and molecular diffusion rate were demonstrated using the DECS-mapping technique, which may account for the mechanisms underlying the changes in brain ISF. This study provides a novel perspective for encephalopathy treatment via the brain ECS.

15.
Front Chem ; 11: 1124559, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36711234

RESUMEN

Nanotheranostic agents that integrate diagnosis and treatment are promising for precision medicine, but they encounter some obstacles such as penetration depth and efficiency. In this study, novel carbon nitride-rose bengal nanoparticles (CN-RB NPs) with a graphite carbon nitride skeleton were synthesized by one-step thermal copolymerization. The enhanced absorption in the near-infrared-II region (NIR-II) endows CN-RB NPs with an excellent photothermal effect under 1064 nm laser irradiation, as well as an obvious photoacoustic signal for imaging in vivo. Interestingly, due to the introduced iodine element, CN-RB NPs exhibit enhanced radiation therapy, indicating that CN-RB NPs can achieve ideal therapeutic outcome through collaborative photothermal/radiation therapy under the guidance of NIR-II photoacoustic imaging. Moreover, CN-RB NPs demonstrate minimal side effects and long-term biological stability after 14 days. Therefore, the proposed new multifunctional nano-platform CN-RB NPs hold great potential in the application of deep therapeutics.

16.
Acta Pharm Sin B ; 12(8): 3427-3447, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35967283

RESUMEN

Platelets buoy up cancer metastasis via arresting cancer cells, enhancing their adhesion, and facilitating their extravasation through the vasculature. When deprived of intracellular and granular contents, platelet decoys could prevent metastatic tumor formation. Inspired by these, we developed nanoplatesomes by fusing platelet membranes with lipid membranes (P-Lipo) to restrain metastatic tumor formation more efficiently. It was shown nanoplateletsomes bound with circulating tumor cells (CTC) efficiently, interfered with CTC arrest by vessel endothelial cells, CTC extravasation through endothelial layers, and epithelial-mesenchymal transition of tumor cells as nanodecoys. More importantly, in the mouse breast tumor metastasis model, nanoplateletsomes could decrease CTC survival in the blood and counteract metastatic tumor growth efficiently by inhibiting the inflammation and suppressing CTC escape. Therefore, nanoplatelesomes might usher in a new avenue to suppress lung metastasis.

17.
Light Sci Appl ; 11(1): 47, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35228527

RESUMEN

Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.

18.
Sci Adv ; 8(6): eabj1262, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148178

RESUMEN

Limited circulating tumor cells (CTCs) capturing efficiency and lack of regulation capability on CTC-supportive metastatic niches (MNs) are two main obstacles hampering the clinical translation of conventional liposomes for the treatment of metastatic breast cancers. Traditional delivery strategies, such as ligand modification and immune modulator co-encapsulation for nanocarriers, are inefficient and laborious. Here, a multifunctional Rg3 liposome loading with docetaxel (Rg3-Lp/DTX) was developed, in which Rg3 was proved to intersperse in the phospholipid bilayer and exposed its glycosyl on the liposome surface. Therefore, it exhibited much higher CTC-capturing efficiency via interaction with glucose transporter 1 (Glut1) overexpressed on CTCs. After reaching the lungs with CTCs, Rg3 inhibited the formation of MNs by reversing the immunosuppressive microenvironment. Together, Rg3-Lp/DTX exhibited excellent metastasis inhibition capacity by CTC ("seeds") neutralization and MN ("soil") inhibition. The strategy has great clinical translation prospects for antimetastasis treatment with enhanced therapeutic efficacy and simple preparation process.


Asunto(s)
Ginsenósidos , Células Neoplásicas Circulantes , Línea Celular Tumoral , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Humanos , Liposomas , Microambiente Tumoral
19.
ACS Appl Mater Interfaces ; 14(6): 7626-7635, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119818

RESUMEN

The synergetic photodynamic/photothermal therapy, activated via a single-second near-infrared (NIR-II) laser and guided by photoacoustic imaging (PAI), receives significant attention for precise in vivo therapy. However, due to the lack of a corresponding theranostic agent, it faces a great challenge for practical clinical implementation. Here, we present a single diagnostic and therapeutic nanoplatform named carbon nitride nanoparticles (CN-NPs) for efficient NIR-II PAI-guided photodynamic therapy (PDT)/photothermal therapy (PTT). The CN-NPs were obtained by incorporating an aromatic compound (PTCDA) with a large π-structure into melem by high-temperature polymerization. The absorption of the obtained CN-NPs was significantly enhanced compared with pristine melem. Under 1064 nm laser illumination, sufficient reactive oxygen species (ROS) generated by CN-NPs could reduce the mitochondrial membrane potential. Moreover, the CN-NPs exhibited an efficient PTT effect through improved photothermal stability and high photo-to-heat conversion efficiency (47.6%). We were also able to monitor the accumulation and metabolism of CN-NPs in vivo of mice in real time using PAI. The in vivo experiments proved that the CN-NPs could inhibit tumor growth and recurrence completely under 1064 nm. Thus, the proposed innovative strategy would open a new avenue to explore and construct NIR-II responsive nanoplatforms with enhanced performance and safety for multimodal phototheranostics.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Técnicas Fotoacústicas , Fotoquimioterapia , Animales , Línea Celular Tumoral , Hipertermia Inducida/métodos , Rayos Láser , Ratones , Nanopartículas/química , Nitrilos , Técnicas Fotoacústicas/métodos , Fotoquimioterapia/métodos , Fototerapia/métodos , Nanomedicina Teranóstica/métodos
20.
ACS Nano ; 16(1): 974-983, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34962763

RESUMEN

Oxygen consumption but hypoxic tumor environment has been considered as the major obstacle in photodynamic therapy. Although oxygen-supplied strategies have been reported extensively, they still suffer from the complicated system and unsatisfied PDT efficiency. Herein, one-component layered nickel silicate nanoplatforms (LNS NPs) are successfully synthesized using natural vermiculite as the silica source, which can simultaneously supply oxygen (O2) and generate superoxide radicals (O2-•) under near-infrared irradiation. The appropriate electron band structure endows LNS NPs with attractive optical properties, where the bandgap edges determine the performance of redox activity and spectral response characteristic. Evidenced by both in vitro and in vivo investigations, LNS NPs can generate sufficient superoxide radicals under 660 nm laser irradiation to induce tumor cell apoptosis even in a severe hypoxic environment, which benefits from self-supplied oxygen. Besides, the photoacoustic oxy-hem imaging and histologic assay further demonstrated that the generated oxygen can relieve the inherent intratumoral hypoxia. Therefore, LNS NPs not only serve as superoxide radical generator but also produce oxygen to modulate hypoxia, suggesting that it can be used for superoxide radical-mediated photodynamic therapy with enhanced antitumor effect.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Humanos , Superóxidos , Níquel , Fotoquimioterapia/métodos , Hipoxia/tratamiento farmacológico , Oxígeno/uso terapéutico , Silicatos/uso terapéutico , Línea Celular Tumoral , Fármacos Fotosensibilizantes/química , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA