Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Elife ; 102021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34423779

RESUMEN

Arthropod-borne rickettsial pathogens cause mild and severe human disease worldwide. The tick-borne pathogen Rickettsia parkeri elicits skin lesions (eschars) and disseminated disease in humans; however, inbred mice are generally resistant to infection. We report that intradermal infection of mice lacking both interferon receptors (Ifnar1-/-;Ifngr1-/-) with as few as 10 R. parkeri elicits eschar formation and disseminated, lethal disease. Similar to human infection, eschars exhibited necrosis and inflammation, with bacteria primarily found in leukocytes. Using this model, we find that the actin-based motility factor Sca2 is required for dissemination from the skin to internal organs, and the outer membrane protein OmpB contributes to eschar formation. Immunizing Ifnar1-/-;Ifngr1-/- mice with sca2 and ompB mutant R. parkeri protects against rechallenge, revealing live-attenuated vaccine candidates. Thus, Ifnar1-/-;Ifngr1-/- mice are a tractable model to investigate rickettsiosis, virulence factors, and immunity. Our results further suggest that discrepancies between mouse and human susceptibility may be due to differences in interferon signaling.


Tick bites allow disease-causing microbes, including multiple species of Rickettsia bacteria, to pass from arthropods to humans. Being exposed to Rickettsia parkeri, for example, can cause a scab at the bite site, fever, headache and fatigue. To date, no vaccine is available against any of the severe diseases caused by Rickettsia species. Modelling human infections in animals could help to understand and combat these illnesses. R. parkeri is a good candidate for such studies, as it can give insight into more severe Rickettsia infections while being comparatively safer to handle. However, laboratory mice are resistant to this species of bacteria, limiting their use as models. To explore why this is the case, Burke et al. probed whether an immune mechanism known as interferon signalling protects laboratory rodents against R. parkeri. During infection, the immune system releases molecules called interferons that stick to 'receptors' at the surface of cells, triggering defense mechanisms that help to fight off an invader. Burke et al. injected R. parkeri into the skin of mice that had or lacked certain interferon receptors, showing that animals without two specific receptors developed scabs and saw the disease spread through their body. Further investigation showed that two R. parkeri proteins, known as OmpB or Sca2, were essential for the bacteria to cause skin lesions and damage internal organs. Burke et al. then used R. parkeri that lacked OmpB or Sca2 to test whether these modified, inoffensive microbes could act as 'vaccines'. And indeed, vulnerable laboratory mice which were first exposed to the mutant bacteria were then able to survive the 'normal' version of the microbe. Together, this work reveals that interferon signalling protects laboratory mice against R. parkeri infections. It also creates an animal model that can be used to study disease and vaccination.


Asunto(s)
Estudios de Asociación Genética , Receptores de Interferón/deficiencia , Receptores de Interferón/genética , Infecciones por Rickettsia/inmunología , Animales , Médula Ósea , Femenino , Inmunidad Innata , Inflamación , Listeria monocytogenes , Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Rickettsia , Infecciones por Rickettsia/patología , Garrapatas
2.
Dev Cell ; 56(4): 443-460.e11, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33621492

RESUMEN

Intracellular pathogens alter their host cells' mechanics to promote dissemination through tissues. Conversely, host cells may respond to the presence of pathogens by altering their mechanics to limit infection. Here, we monitored epithelial cell monolayers infected with intracellular bacterial pathogens, Listeria monocytogenes or Rickettsia parkeri, over days. Under conditions in which these pathogens trigger innate immune signaling through NF-κB and use actin-based motility to spread non-lytically intercellularly, we found that infected cell domains formed three-dimensional mounds. These mounds resulted from uninfected cells moving toward the infection site, collectively squeezing the softer and less contractile infected cells upward and ejecting them from the monolayer. Bacteria in mounds were less able to spread laterally in the monolayer, limiting the growth of the infection focus, while extruded infected cells underwent cell death. Thus, the coordinated forceful action of uninfected cells actively eliminates large domains of infected cells, consistent with this collective cell response representing an innate immunity-driven process.


Asunto(s)
Competencia Celular , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Inmunidad Innata , Listeria monocytogenes/fisiología , Listeriosis/inmunología , Listeriosis/microbiología , Transducción de Señal , Actomiosina/metabolismo , Animales , Apoptosis , Fenómenos Biomecánicos , Adhesión Celular , Línea Celular , Simulación por Computador , Perros , Interacciones Huésped-Patógeno , Humanos , Uniones Intercelulares/metabolismo , Terapia por Láser , Listeriosis/genética , Células de Riñón Canino Madin Darby , FN-kappa B/metabolismo , Imagen de Lapso de Tiempo , Transcripción Genética
3.
Hip Int ; 31(3): 295-303, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32297561

RESUMEN

AIMS: Modular-neck femoral implants are used to enable more variability in femoral neck version, offset and length. It has been reported that these implants carry a higher rate of revision. The aim of this review was to assess the overall and cause-specific revision rate of titanium-titanium alloy modular-neck implants in primary total hip arthroplasty (THA). METHODS: A systematic review was conducted following PRISMA guidelines and utilising multiple databases. All results were screened for eligibility. Studies published from 2000 onwards, using a current-generation, titanium-titanium, modular-neck implant were included. Overall and cause-specific revision rates were analysed, comparing to fixed-neck prostheses where applicable. RESULTS: 920 studies were screened. After applying exclusion criteria, 23 were assessed in full and 14 included. These consisted of 12 case series and 2 joint registry analyses. 21,841 patients underwent a modular-neck implant with a weighted mean follow-up of 5.7 years, mean age of 62.4 years, and average body mass index (BMI) of 28.4kg/m2. The overall revision rate was 3.95% and 2.98% for modular and fixed-neck prostheses, respectively. For studies with >5 years follow-up the mean revision rate was 3.08%. There was no difference in cause-specific revision rates by implant design. Mean improvement in Harris Hip Score was 41.9. CONCLUSIONS: At medium-term, revision rates for titanium-titanium primary modular-neck THA are acceptable. These prostheses are a sensible management option in patients with considerable anatomical hip deformity not amenable to correction with standard fixed-neck implants. Patients of male gender, high BMI and requiring prostheses with a larger neck, offset or head are at higher risk of implant failure.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Artroplastia de Reemplazo de Cadera/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Diseño de Prótesis , Falla de Prótesis , Reoperación , Estudios Retrospectivos , Titanio
4.
Nat Microbiol ; 4(12): 2538-2551, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31611642

RESUMEN

Rickettsia are obligate intracellular bacteria that evade antimicrobial autophagy in the host cell cytosol by unknown mechanisms. Other cytosolic pathogens block different steps of autophagy targeting, including the initial step of polyubiquitin-coat formation. One mechanism of evasion is to mobilize actin to the bacterial surface. Here, we show that actin mobilization is insufficient to block autophagy recognition of the pathogen Rickettsia parkeri. Instead, R. parkeri employs outer membrane protein B (OmpB) to block ubiquitylation of the bacterial surface proteins, including OmpA, and subsequent recognition by autophagy receptors. OmpB is also required for the formation of a capsule-like layer. Although OmpB is dispensable for bacterial growth in endothelial cells, it is essential for R. parkeri to block autophagy in macrophages and to colonize mice because of its ability to promote autophagy evasion in immune cells. Our results indicate that OmpB acts as a protective shield to obstruct autophagy recognition, thereby revealing a distinctive bacterial mechanism to evade antimicrobial autophagy.


Asunto(s)
Autofagia/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Evasión Inmune , Infecciones por Rickettsia/inmunología , Rickettsia/inmunología , Células A549 , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Línea Celular , Chlorocebus aethiops , Citosol/microbiología , Modelos Animales de Enfermedad , Células Endoteliales/microbiología , Femenino , Técnicas de Inactivación de Genes , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos , Poliubiquitina/metabolismo , Rickettsia/genética , Rickettsia/crecimiento & desarrollo , Infecciones por Rickettsia/microbiología , Transcriptoma , Células Vero , Virulencia
5.
mBio ; 9(3)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29764944

RESUMEN

The oxidoreductase RECON is a high-affinity cytosolic sensor of bacterium-derived cyclic dinucleotides (CDNs). CDN binding inhibits RECON's enzymatic activity and subsequently promotes inflammation. In this study, we sought to characterize the effects of RECON on the infection cycle of the intracellular bacterium Listeria monocytogenes, which secretes cyclic di-AMP (c-di-AMP) into the cytosol of infected host cells. Here, we report that during infection of RECON-deficient hepatocytes, which exhibit hyperinflammatory responses, L. monocytogenes exhibits significantly enhanced cell-to-cell spread. Enhanced bacterial spread could not be attributed to alterations in PrfA or ActA, two virulence factors critical for intracellular motility and intercellular spread. Detailed microscopic analyses revealed that in the absence of RECON, L. monocytogenes actin tail lengths were significantly longer and there was a larger number of faster-moving bacteria. Complementation experiments demonstrated that the effects of RECON on L. monocytogenes spread and actin tail lengths were linked to its enzymatic activity. RECON enzyme activity suppresses NF-κB activation and is inhibited by c-di-AMP. Consistent with these previous findings, we found that augmented NF-κB activation in the absence of RECON caused enhanced L. monocytogenes cell-to-cell spread and that L. monocytogenes spread correlated with c-di-AMP secretion. Finally, we discovered that, remarkably, increased NF-κB-dependent inducible nitric oxide synthase expression and nitric oxide production were responsible for promoting L. monocytogenes cell-to-cell spread. The work presented here supports a model whereby L. monocytogenes secretion of c-di-AMP inhibits RECON's enzymatic activity, drives augmented NF-κB activation and nitric oxide production, and ultimately enhances intercellular spread.IMPORTANCE To date, bacterial CDNs in eukaryotes are solely appreciated for their capacity to activate cytosolic sensing pathways in innate immunity. However, it remains unclear whether pathogens that actively secrete CDNs benefit from this process. Here, we provide evidence that secretion of CDNs leads to enhancement of L. monocytogenes cell-to-cell spread. This is a heretofore-unknown role of these molecules and suggests L. monocytogenes may benefit from their secretion in certain contexts. Molecular characterization revealed that, surprisingly, nitric oxide was responsible for the enhanced spread. Pathogens act to prevent nitric oxide production or, like L. monocytogenes, they have evolved to resist its direct antimicrobial effects. This study provides evidence that intracellular bacterial pathogens not only tolerate nitric oxide, which is inevitably encountered during infection, but can also capitalize on the changes this pleiotropic molecule enacts on the host cell.


Asunto(s)
Estradiol Deshidrogenasas/inmunología , Hepatocitos/enzimología , Listeria monocytogenes/fisiología , Listeriosis/enzimología , Oxidorreductasas/metabolismo , Animales , AMP Cíclico/metabolismo , Estradiol Deshidrogenasas/genética , Hepatocitos/inmunología , Hepatocitos/microbiología , Humanos , Listeria monocytogenes/genética , Listeriosis/inmunología , Listeriosis/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/genética , FN-kappa B/inmunología , Oxidorreductasas/genética
6.
Cell ; 167(3): 670-683.e10, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768890

RESUMEN

Spotted fever group (SFG) rickettsiae are human pathogens that infect cells in the vasculature. They disseminate through host tissues by a process of cell-to-cell spread that involves protrusion formation, engulfment, and vacuolar escape. Other bacterial pathogens rely on actin-based motility to provide a physical force for spread. Here, we show that SFG species Rickettsia parkeri typically lack actin tails during spread and instead manipulate host intercellular tension and mechanotransduction to promote spread. Using transposon mutagenesis, we identified surface cell antigen 4 (Sca4) as a secreted effector of spread that specifically promotes protrusion engulfment. Sca4 interacts with the cell-adhesion protein vinculin and blocks association with vinculin's binding partner, α-catenin. Using traction and monolayer stress microscopy, we show that Sca4 reduces vinculin-dependent mechanotransduction at cell-cell junctions. Our results suggest that Sca4 relieves intercellular tension to promote protrusion engulfment, which represents a distinctive strategy for manipulating cytoskeletal force generation to enable spread.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Mecanotransducción Celular , Infecciones por Rickettsia/metabolismo , Infecciones por Rickettsia/microbiología , Rickettsia/patogenicidad , Vinculina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Elementos Transponibles de ADN/genética , Fiebre/metabolismo , Fiebre/microbiología , Humanos , Mutagénesis Insercional , Mutación , Rickettsia/metabolismo , alfa Catenina/metabolismo
7.
Cell ; 161(2): 348-60, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25860613

RESUMEN

Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection.


Asunto(s)
Actinas/metabolismo , Infecciones por Burkholderia/microbiología , Burkholderia/fisiología , Burkholderia/patogenicidad , Moléculas de Adhesión Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Burkholderia/clasificación , Burkholderia/enzimología , Células COS , Fusión Celular , Línea Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia
8.
Cell ; 160(4): 581-582, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679757

RESUMEN

Migrating cells exhibit distinct motility modes and can switch between modes based on chemical or physical cues. Liu et al. and Ruprecht et al. now describe how confinement and contractility influence motility mode plasticity and instigate a mode termed stable bleb migration in embryonic and tumor cells.


Asunto(s)
Movimiento Celular , Embrión no Mamífero/citología , Gástrula/citología , Mesodermo/citología , Células Madre/citología , Pez Cebra/embriología , Animales , Humanos
9.
PLoS Biol ; 12(1): e1001765, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453943

RESUMEN

Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Complejo 2-3 Proteico Relacionado con la Actina/ultraestructura , Baculoviridae/ultraestructura , Modelos Estadísticos , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Baculoviridae/química , Baculoviridae/fisiología , Ensayo Cometa , Tomografía con Microscopio Electrónico , Expresión Génica , Genes Reporteros , Carpa Dorada , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Melanoma Experimental , Células Sf9 , Spodoptera , Proteína Fluorescente Roja
10.
Autophagy ; 7(1): 17-26, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20980813

RESUMEN

Autophagy mediates the degradation of cytoplasmic components in eukaryotic cells and plays a key role in immunity. The mechanism of autophagosome formation is not clear. Here we examined two potential membrane sources for antibacterial autophagy: the ER and mitochondria. DFCP1, a marker of specialized ER domains known as 'omegasomes,' associated with Salmonella-containing autophagosomes via its PtdIns(3)P and ER-binding domains, while a mitochondrial marker (cytochrome b5-GFP) did not. Rab1 also localized to autophagosomes, and its activity was required for autophagosome formation, clearance of protein aggregates and peroxisomes, and autophagy of Salmonella. Overexpression of Rab1 enhanced antibacterial autophagy. The role of Rab1 in antibacterial autophagy was independent of its role in ER-to-Golgi transport. Our data suggest that antibacterial autophagy occurs at omegasomes and reveal that the Rab1 GTPase plays a crucial role in mammalian autophagy.


Asunto(s)
Autofagia , Retículo Endoplásmico/enzimología , Membranas Intracelulares/enzimología , Fosfatos de Fosfatidilinositol/metabolismo , Salmonella typhimurium/inmunología , Proteínas de Unión al GTP rab1/metabolismo , Animales , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/efectos de los fármacos , Ratones , Peroxisomas/efectos de los fármacos , Peroxisomas/metabolismo , Fagosomas/microbiología , Estructura Cuaternaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Sirolimus/farmacología , Proteínas Ubiquitinadas/química
11.
Nat Cell Biol ; 8(8): 826-33, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16862144

RESUMEN

The Arp2/3 complex, which is crucial for actin-based motility, nucleates actin filaments and organizes them into y-branched networks. The Arp2 subunit has been shown to hydrolyse ATP, but the functional importance of Arp2/3 ATP hydrolysis is not known. Here, we analysed an Arp2 mutant in Saccharomyces cerevisiae that is defective in ATP hydrolysis. Arp2 ATP hydrolysis and Arp2/3-dependent actin nucleation occur almost simultaneously. However, ATP hydrolysis is not required for nucleation. In addition, Arp2 ATP hydrolysis is not required for the release of a WASP-like activator from y-branches. ATP hydrolysis by Arp2, and possibly Arp3, is essential for efficient y-branch dissociation in vitro. In living cells, both Arp2 and Arp3 ATP-hydrolysis mutants exhibit defects in endocytic internalization and actin-network disassembly. Our results suggest a critical feature of dendritic nucleation in which debranching and subsequent actin-filament remodelling and/or depolymerization are important for endocytic vesicle morphogenesis.


Asunto(s)
Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Endocitosis/fisiología , Proteína 2 Relacionada con la Actina/genética , Proteína 3 Relacionada con la Actina/genética , Catálisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hidrólisis , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Mutación/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología
12.
Mol Biol Cell ; 16(12): 5773-83, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16207810

RESUMEN

Exposure of neutrophils to chemoattractant induces cell polarization and migration. These behaviors require the asymmetric activation of distinct signaling pathways and cytoskeletal elements in the protruding pseudopod at the front of cells and the retracting uropod at the rear. An important outstanding question is, how does the organization of the plasma membrane participate in establishing asymmetry during polarization and migration? To answer this question, we investigated the function of cholesterol, a lipid known to influence membrane organization. Using controlled cholesterol depletion, we found that a cholesterol-dependent membrane organization enabled cell polarization and migration by promoting uropod function and suppressing ectopic pseudopod formation. At a mechanistic level, we showed that cholesterol was directly required for suppressing inappropriate activation of the pseudopod-promoting Gi/PI3-kinase signaling pathway. Furthermore, cholesterol was required for dampening Gi-dependent negative feedback on the RhoA signaling pathway, thus enabling RhoA activation and uropod function. Our findings suggest a model in which a cholesterol-dependent membrane organization plays an essential role in the establishment of cellular asymmetry by balancing the activation and segregating the localization of competing pseudopod- and uropod-inducing signaling pathways during neutrophil polarization and migration.


Asunto(s)
Membrana Celular/fisiología , Neutrófilos/fisiología , Neutrófilos/ultraestructura , Seudópodos/fisiología , Membrana Celular/ultraestructura , Movimiento Celular , Polaridad Celular , Factores Quimiotácticos/farmacología , Colesterol/deficiencia , Colesterol/metabolismo , Células HL-60 , Humanos , Neutrófilos/efectos de los fármacos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
Structure ; 10(2): 131-5, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11839297

RESUMEN

The recently published 2 A X-ray crystal structure of bovine Arp2/3 complex gives us atomic scale insight into Arp2/3-mediated actin nucleation, while cryo-EM work and functional studies begin to fill in exciting mechanistic details.


Asunto(s)
Actinas/química , Proteínas del Citoesqueleto , Proteína 2 Relacionada con la Actina , Proteína 3 Relacionada con la Actina , Actinas/ultraestructura , Adenosina Trifosfato/metabolismo , Animales , Sustancias Macromoleculares , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA