Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Parkinsonism Relat Disord ; 104: 49-57, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36242900

RESUMEN

INTRODUCTION: Subthalamic deep-brain-stimulation (STN-DBS) is an effective means to treat Parkinson's disease (PD) symptoms. Its benefit on gait disorders is variable, with freezing of gait (FOG) worsening in about 30% of cases. Here, we investigate the clinical and anatomical features that could explain post-operative FOG. METHODS: Gait and balance disorders were assessed in 19 patients, before and after STN-DBS using clinical scales and gait recordings. The location of active stimulation contacts were evaluated individually and the volumes of activated tissue (VAT) modelled for each hemisphere. We used a whole brain tractography template constructed from another PD cohort to assess the connectivity of each VAT within the 39 Brodmann cortical areas (BA) to search for correlations between postoperative PD disability and cortico-subthalamic connectivity. RESULTS: STN-DBS induced a 100% improvement to a 166% worsening in gait disorders, with a mean FOG decrease of 36%. We found two large cortical clusters for VAT connectivity: one "prefrontal", mainly connected with BA 8,9,10,11 and 32, and one "sensorimotor", mainly connected with BA 1-2-3,4 and 6. After surgery, FOG severity positively correlated with the right prefrontal VAT connectivity, and negatively with the right sensorimotor VAT connectivity. The right prefrontal VAT connectivity also tended to be positively correlated with the UPDRS-III score, and negatively with step length. The MDRS score positively correlated with the right sensorimotor VAT connectivity. CONCLUSION: Recruiting right sensorimotor and avoiding right prefrontal cortico-subthalamic fibres with STN-DBS could explain reduced post-operative FOG, since gait is a complex locomotor program that necessitates accurate cognitive control.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Marcha/fisiología
2.
Parkinsonism Relat Disord ; 96: 13-17, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121249

RESUMEN

INTRODUCTION: Deep brain stimulation (DBS) of the mesencephalic locomotor region, composed of the pedunculopontine (PPN) and cuneiform (CuN) nuclei, has been proposed to treat dopa-resistant gait and balance disorders in Parkinson's disease (PD). Here, we report the long-term effects of PPN- or CuN-DBS on these axial disorders. METHODS: In 6 PD patients operated for mesencephalic locomotor region DBS and prospectively followed for more than 2 years, we assessed the effects of both PPN- and CuN-DBS (On-dopa) in a cross-over single-blind study by using clinical scales and recording gait parameters. Patients were also examined Off-DBS. RESULTS: More than 2 years after surgery, axial and Tinetti scores were significantly aggravated with both PPN- or CuN-DBS relative to before and one year after surgery. Gait recordings revealed an increased double-stance duration with both PPN- or CuN-DBS, higher swing phase duration with CuN-DBS and step width with PPN-DBS. With PPN- versus CuN-DBS, the step length, velocity and cadence were significantly higher; and the double-stance and turn durations significantly lower. Irrespective the target, we found no significant change in clinical scores Off-DBS compared to On-DBS. The duration of anticipatory postural adjustments as well as step length were lower with versus without PPN-DBS. We found no other significant changes in motor, cognitive or psychiatric scores, except an increased anxiety severity. CONCLUSION: In this long-term follow-up study with controlled assessments, PPN- or CuN-DBS did not improve dopa-resistant gait and balance disorders with a worsening of these axial motor signs with time, thus indicating no significant clinical effect.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Núcleo Tegmental Pedunculopontino , Dihidroxifenilalanina , Estudios de Seguimiento , Marcha , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiología , Método Simple Ciego
3.
Ann Neurol ; 91(3): 424-435, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34984729

RESUMEN

OBJECTIVE: This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS: Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS: Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION: Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.


Asunto(s)
Cognición/fisiología , Estimulación Encefálica Profunda/métodos , Glucosilceramidasa/genética , Heterocigoto , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pruebas Neuropsicológicas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología
4.
J Parkinsons Dis ; 12(2): 639-653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34744048

RESUMEN

BACKGROUND: Dopa-resistant freezing of gait (FOG) and falls represent the dominant motor disabilities in advanced Parkinson's disease (PD). OBJECTIVE: We investigate the effects of deep brain stimulation (DBS) of the mesencephalic locomotor region (MLR), comprised of the pedunculopontine (PPN) and cuneiform (CuN) nuclei, for treating gait and balance disorders, in a randomized double-blind cross-over trial. METHODS: Six PD patients with dopa-resistant FOG and/or falls were operated for MLR-DBS. Patients received three DBS conditions, PPN, CuN, or Sham, in a randomized order for 2-months each, followed by an open-label phase. The primary outcome was the change in anteroposterior anticipatory-postural-adjustments (APAs) during gait initiation on a force platformResults:The anteroposterior APAs were not significantly different between the DBS conditions (median displacement [1st-3rd quartile] of 3.07 [3.12-4.62] cm with sham-DBS, 1.95 [2.29-3.85] cm with PPN-DBS and 2.78 [1.66-4.04] cm with CuN-DBS; p = 0.25). Step length and velocity were significantly higher with CuN-DBS vs. both sham-DBS and PPN-DBS. Conversely, step length and velocity were lower with PPN-DBS vs. sham-DBS, with greater double stance and gait initiation durations. One year after surgery, step length was significantly lower with PPN-DBS vs. inclusion. We did not find any significant change in clinical scales between DBS conditions or one year after surgery. CONCLUSION: Two months of PPN-DBS or CuN-DBS does not effectively improve clinically dopa-resistant gait and balance disorders in PD patients.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Núcleo Tegmental Pedunculopontino , Estimulación Encefálica Profunda/métodos , Dihidroxifenilalanina , Marcha , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiología
5.
Parkinsonism Relat Disord ; 76: 56-62, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32866938

RESUMEN

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) has demonstrated its efficacy on motor complications in advanced Parkinson's disease (PD) but does not modify disease progression. Genetic forms of PD have been associated with different cognitive progression profiles. OBJECTIVE: To assess the effect of PD-related genetic mutations on cognitive outcome after STN-DBS. METHODS: Patients with STN-DBS were screened for LRRK2, GBA, and PRKN mutations at the Pitié-Salpêtrière Hospital between 1997 and 2009. Patients with known monogenetic forms of PD from six other centers were also included. The Mattis Dementia Rating Scale (MDRS) was used to evaluate cognition at baseline and one-year post-surgery. The standardized Unified PD Rating Scale (UPDRS) evaluation On and Off medication/DBS was also administered. A generalized linear model adjusted for sex, ethnicity, age at onset, and disease duration was used to evaluate the effect of genetic factors on MDRS changes. RESULTS: We analyzed 208 patients (131 males, 77 females, 54.3 ± 8.8 years) including 25 GBA, 18 LRRK2, 22 PRKN, and 143 PD patients without mutations. PRKN patients were younger and had a longer disease duration at baseline. A GBA mutation was the only significant genetic factor associated with MDRS change (ß = -2.51, p = 0.009). GBA mutation carriers had a more pronounced post-operative MDRS decline (3.2 ± 5.1) than patients with LRRK2 (0.9 ± 4.8), PRKN (0.5 ± 2.7) or controls (1.4 ± 4.4). The motor response to DBS was similar between groups. CONCLUSION: GBA mutations are associated with early cognitive decline following STN-DBS. Neuropsychological assessment and discussions on the benefit/risk ratio of DBS are particularly important for this population.


Asunto(s)
Disfunción Cognitiva , Estimulación Encefálica Profunda , Progresión de la Enfermedad , Glucosilceramidasa/genética , Enfermedad de Parkinson , Núcleo Subtalámico , Anciano , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Estimulación Encefálica Profunda/efectos adversos , Femenino , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Estudios Retrospectivos , Núcleo Subtalámico/cirugía , Ubiquitina-Proteína Ligasas/genética
6.
Int J Med Robot ; 15(6): e2032, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31400032

RESUMEN

INTRODUCTION: The use of a robot-assisted technology becomes very competitive. The aim of this work was to define the accuracy of robotic assistance in deep brain stimulation surgery and to compare results with that in the literature. METHODS: We retrospectively reviewed the accuracy of lead implantation in 24 consecutive patients who had robot-assisted (ROSA, Zimmer-Biomet) surgery for the treatment of movement disorders. Intended stereotactic coordinates (x, y, z) of contact 0 (the most distal contact at the tip of the electrode) of each definitive lead were compared with actual coordinates obtained by a postoperative CT scan. For each lead, the euclidian 3D distance between the actual and intended location of contact 0 was calculated. RESULTS: The euclidian 3D distances between the intended and actual location of the contact 0 were 0.81 mm on the right side and 1.12 mm on the left side. DISCUSSION: Robot-assisted technology for stereotactic surgery is safe and accurate. The association with a 3D flat-panel CT scan is an optimized procedure for deep intracranial electrode implantation.


Asunto(s)
Encéfalo/cirugía , Estimulación Encefálica Profunda/métodos , Trastornos del Movimiento/cirugía , Procedimientos Quirúrgicos Robotizados/métodos , Adulto , Anciano , Tornillos Óseos , Electrodos , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Destreza Motora , Reproducibilidad de los Resultados , Estudios Retrospectivos , Técnicas Estereotáxicas , Núcleo Subtalámico/fisiología , Tomografía Computarizada por Rayos X
7.
Neurology ; 92(22): e2559-e2570, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31043471

RESUMEN

OBJECTIVE: To characterize how disease progression is associated with mortality in a large cohort of patients with Parkinson disease (PD) with long-term follow-up after subthalamic nucleus deep brain stimulation (STN-DBS). METHODS: Motor and cognitive disabilities were assessed before and 1, 2, 5, and 10 years after STN-DBS in 143 consecutive patients with PD. We measured motor symptoms "off" and "on" levodopa and STN-DBS and recorded causes of death. We used linear mixed models to characterize symptom progression, including interactions between treatment conditions and time to determine how treatments changed efficacy. We used joint models to link symptom progression to mortality. RESULTS: Median observation time was 12 years after surgery, during which akinesia, rigidity, and axial symptoms worsened, with mean increases of 8.8 (SD 6.5), 1.8 (3.1), and 5.4 (4.1) points from year 1-10 after surgery ("on" dopamine/"on" STN-DBS), respectively. Responses to dopaminergic medication and STN-DBS were attenuated with time, but remained effective for all except axial symptoms, for which both treatments and their combination were predicted to be ineffective 20 years after surgery. Cognitive status significantly declined. Forty-one patients died, with a median time to death of 9 years after surgery. The current level of axial disability was the only symptom that significantly predicted death (hazard ratio 4.30 [SE 1.50] per unit of square-root transformed axial score). CONCLUSIONS: We quantified long-term symptom progression and attenuation of dopaminergic medication and STN-DBS treatment efficacy in patients with PD and linked symptom progression to mortality. Axial disability significantly predicts individual risk of death after surgery, which may be useful for planning therapeutic strategies in PD.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson/mortalidad , Enfermedad de Parkinson/terapia , Antiparkinsonianos/uso terapéutico , Evaluación de la Discapacidad , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Levodopa/uso terapéutico , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Pronóstico , Núcleo Subtalámico
8.
Parkinsonism Relat Disord ; 62: 91-97, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30704853

RESUMEN

INTRODUCTION: Freezing of gait (FOG) and falls are the most disabling motor symptoms in Parkinson's disease (PD) patients. The effects of subthalamic deep-brain-stimulation (STN-DBS) on FOG and falls are still a matter of controversy, and factors contributing to their outcome have yet to be defined. METHODS: We examined the relationship between FOG and falls after STN-DBS and preoperative clinical features, MRI voxel-based-morphometry (VBM) analysis and statistical mapping of electrode locations. RESULTS: 331 patients (age at surgery = 57.7 ±â€¯8.4 years; disease duration = 12.5 ±â€¯5 years) were included in the final analysis, with VBM analysis in 151 patients. After surgery, FOG was aggravated in 93 patients and falls in 75 patients. After surgery, FOG severity was related to its level before surgery without dopaminergic treatment, the dopaminergic treatment dosage and severity of motor fluctuations after surgery; and falls severity to lower postoperative cognitive performance. VBM analyses revealed that, relative to other patient groups, patients with FOG worsening had putamen grey matter density decrease, and fallers patients a left postcentral gyrus atrophy. The best effects of STN-DBS on FOG and falls were associated with the location of contacts within the STN, but no specific location related to aggravation. CONCLUSIONS: FOG and falls are reduced after STN-DBS in about 1/3 of patients, with the best effects obtained for electrodes located within the STN. Clinicians should be aware that, after STN-DBS, FOG severity is related to preoperative FOG severity whatever its dopa-sensitivity; and falls to lower postoperative cognitive performance; and atrophy of cortico-subcortical brain areas.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha/terapia , Marcha/fisiología , Enfermedad de Parkinson/terapia , Accidentes por Caídas , Adulto , Anciano , Estimulación Encefálica Profunda/efectos adversos , Dopamina/metabolismo , Femenino , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiopatología
9.
Hum Brain Mapp ; 40(9): 2561-2570, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30779251

RESUMEN

Decline of verbal fluency (VF) performance is one of the most systematically reported neuropsychological adverse effects after subthalamic nucleus deep brain stimulation (STN-DBS). It has been suggested that this worsening of VF may be related to a microlesion due to the electrode trajectories. We describe the disruption of surrounding white matter tracts following electrode implantation in Parkinson's disease (PD) patients with STN-DBS and assess whether damage of fiber pathways is associated with VF impairment after surgery. We retrospectively analyzed 48 PD patients undergoing bilateral STN DBS. The lesion mask along the electrode trajectory transformed into the MNI 152 coordinate system, was compared with white matter tract atlas in Tractotron software, which provides a probability and proportion of fibers disconnection. Combining tract- and atlas-based analysis reveals that the trajectory of the electrodes intersected successively with the frontal aslant tract, anterior segment of arcuate tract, the long segment of arcuate tract, the inferior longitudinal fasciculus, the superior longitudinal fasciculus, the anterior thalamic radiation, and the fronto striatal tract. We found no association between the proportion fiber disconnection and the severity of VF impairment 6 months after surgery. Our findings demonstrated that microstructural injury associated with electrode trajectories involved white matter bundles implicated in VF networks.


Asunto(s)
Disfunción Cognitiva/etiología , Estimulación Encefálica Profunda/efectos adversos , Electrodos Implantados/efectos adversos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico , Sustancia Blanca/lesiones , Adulto , Anciano , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Neuroimagen , Enfermedad de Parkinson/cirugía , Estudios Retrospectivos
10.
Clin Neurophysiol ; 129(11): 2482-2491, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30100532

RESUMEN

OBJECTIVE: Freezing of gait (FOG) represents a major burden for Parkinson's disease (PD) patients. High-frequency (130-Hz) subthalamic deep-brain-stimulation (STN-DBS) has been reported to aggravate FOG whereas lowering the frequency to 60-80 Hz improves FOG. To further understand the effects of STN-DBS on FOG, we assessed the effects of 80-Hz and 130-Hz STN-DBS on gait initiation performance, in relation to motor and executive function processing. METHODS: Gait initiation was recorded in 19 PD patients and 20 controls, combined or not with a cognitive interference task with a modified Stroop paradigm. PD patients were recorded before surgery with and without dopaminergic treatment, and after surgery with 80-Hz and 130-Hz STN-DBS in a randomised double-blind crossover study. RESULTS: In the absence of cognitive interference, PD patients exhibited significant gait initiation improvement with dopaminergic treatment, 80-Hz and 130-Hz STN-DBS. Nine patients performed the cognitive interference task. With 130-Hz STN-DBS, all gait initiation parameters were significantly degraded, whereas the cognitive interference task induced no major changes before surgery and with 80-Hz STN-DBS, as in controls. CONCLUSIONS: High-frequency STN-DBS leads to an inability to simultaneously process motor and cognitive information while this ability seems preserved with low-frequency STN-DBS. SIGNIFICANCE: This study supports the potential benefit of 80-Hz STN-DBS on FOG.


Asunto(s)
Cognición , Estimulación Encefálica Profunda/métodos , Marcha , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología
11.
Neurobiol Dis ; 117: 217-225, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29909050

RESUMEN

Exaggerated activity in the beta band (13-35 Hz) is a hallmark of basal ganglia signals in patients with Parkinson's disease (PD). Beta activity however is not constantly elevated, but comes in bursts. In previous work we showed that the longer beta bursts are maintained, the more the oscillatory synchronisation within the subthalamic nucleus (STN) increases, which is posited to limit the information coding capacity of local circuits. Accordingly, a higher incidence of longer bursts correlates positively with clinical impairment, while the opposite is true for short, more physiological bursts. Here, we test the hypothesis that beta bursts not only indicate local synchronisation within the STN, but also phasic coupling across the motor network and hence entail an even greater restriction of information coding capacity in patients with PD. Local field potentials from the subthalamic nucleus and EEG over the motor cortex area were recorded in nine PD patients after temporary lead externalization after surgery for deep brain stimulation and overnight withdrawal of levodopa. Beta bursts were defined as periods exceeding the 75th percentile of signal amplitude and the coupling between bursts was considered using two distinct measurements, first the % overlapping (%OVL) as a feature of the amplitude coupling and secondly the phase synchrony index (PSI) to measure the phase coupling between regions. %OVL between STN and cortex and between the left and the right STN was higher than expected between the regions than if they had been independent. Similarly, PSI was higher during bursts as opposed to non-bursts periods. In addition, %OVL was greater for long compared to short bursts. Our results support the hypothesis that beta bursts involve long-range coupling between structures in the basal ganglia-cortical network. The impact of this is greater during long as opposed to short duration beta bursts. Accordingly, we posit that episodes of simultaneously elevated coupling across multiple structures in the basal ganglia-cortical circuit further limit information coding capacity and may have further impact upon motor impairment.


Asunto(s)
Ganglios Basales/fisiopatología , Ritmo beta/fisiología , Corteza Motora/fisiopatología , Red Nerviosa/fisiopatología , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiopatología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
JAMA Neurol ; 75(3): 353-359, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29340590

RESUMEN

Importance: Collective evidence has strongly suggested that deep brain stimulation (DBS) is a promising therapy for Tourette syndrome. Objective: To assess the efficacy and safety of DBS in a multinational cohort of patients with Tourette syndrome. Design, Setting, and Participants: The prospective International Deep Brain Stimulation Database and Registry included 185 patients with medically refractory Tourette syndrome who underwent DBS implantation from January 1, 2012, to December 31, 2016, at 31 institutions in 10 countries worldwide. Exposures: Patients with medically refractory symptoms received DBS implantation in the centromedian thalamic region (93 of 163 [57.1%]), the anterior globus pallidus internus (41 of 163 [25.2%]), the posterior globus pallidus internus (25 of 163 [15.3%]), and the anterior limb of the internal capsule (4 of 163 [2.5%]). Main Outcomes and Measures: Scores on the Yale Global Tic Severity Scale and adverse events. Results: The International Deep Brain Stimulation Database and Registry enrolled 185 patients (of 171 with available data, 37 females and 134 males; mean [SD] age at surgery, 29.1 [10.8] years [range, 13-58 years]). Symptoms of obsessive-compulsive disorder were present in 97 of 151 patients (64.2%) and 32 of 148 (21.6%) had a history of self-injurious behavior. The mean (SD) total Yale Global Tic Severity Scale score improved from 75.01 (18.36) at baseline to 41.19 (20.00) at 1 year after DBS implantation (P < .001). The mean (SD) motor tic subscore improved from 21.00 (3.72) at baseline to 12.91 (5.78) after 1 year (P < .001), and the mean (SD) phonic tic subscore improved from 16.82 (6.56) at baseline to 9.63 (6.99) at 1 year (P < .001). The overall adverse event rate was 35.4% (56 of 158 patients), with intracranial hemorrhage occurring in 2 patients (1.3%), infection in 4 patients with 5 events (3.2%), and lead explantation in 1 patient (0.6%). The most common stimulation-induced adverse effects were dysarthria (10 [6.3%]) and paresthesia (13 [8.2%]). Conclusions and Relevance: Deep brain stimulation was associated with symptomatic improvement in patients with Tourette syndrome but also with important adverse events. A publicly available website on outcomes of DBS in patients with Tourette syndrome has been provided.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Sistema de Registros , Síndrome de Tourette/terapia , Resultado del Tratamiento , Adolescente , Adulto , Estudios de Cohortes , Bases de Datos Factuales/estadística & datos numéricos , Femenino , Globo Pálido/fisiología , Humanos , Cooperación Internacional , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Método Simple Ciego , Tálamo/fisiología , Adulto Joven
13.
Lancet Neurol ; 16(8): 610-619, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28645853

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) has been proposed to treat patients with severe Tourette's syndrome, and open-label trials and two small double-blind trials have tested DBS of the posterior and the anterior internal globus pallidus (aGPi). We aimed to specifically assess the efficacy of aGPi DBS for severe Tourette's syndrome. METHODS: In this randomised, double-blind, controlled trial, we recruited patients aged 18-60 years with severe and medically refractory Tourette's syndrome from eight hospitals specialised in movement disorders in France. Enrolled patients received surgery to implant bilateral electrodes for aGPi DBS; 3 months later they were randomly assigned (1:1 ratio with a block size of eight; computer-generated pairwise randomisation according to order of enrolment) to receive either active or sham stimulation for the subsequent 3 months in a double-blind fashion. All patients then received open-label active stimulation for the subsequent 6 months. Patients and clinicians assessing outcomes were masked to treatment allocation; an unmasked clinician was responsible for stimulation parameter programming, with intensity set below the side-effect threshold. The primary endpoint was difference in Yale Global Tic Severity Scale (YGTSS) score between the beginning and end of the 3 month double-blind period, as assessed with a Mann-Whitney-Wilcoxon test in all randomly allocated patients who received active or sham stimulation during the double-blind period. We assessed safety in all patients who were enrolled and received surgery for aGPi DBS. This trial is registered with ClinicalTrials.gov, number NCT00478842. FINDINGS: Between Dec 6, 2007, and Dec 13, 2012, we enrolled 19 patients. We randomly assigned 17 (89%) patients, with 16 completing blinded assessments (seven [44%] in the active stimulation group and nine [56%] in the sham stimulation group). We noted no significant difference in YGTSS score change between the beginning and the end of the 3 month double-blind period between groups (active group median YGTSS score 68·5 [IQR 34·0 to 83·5] at the beginning and 62·5 [51·5 to 72·0] at the end, median change 1·1% [IQR -23·9 to 38·1]; sham group 73·0 [69·0 to 79·0] and 79·0 [59·0 to 81·5], median change 0·0% [-10·6 to 4·8]; p=0·39). 15 serious adverse events (three in patients who withdrew before stimulation and six each in the active and sham stimulation groups) occurred in 13 patients (three who withdrew before randomisation, four in the active group, and six in the sham group), with infections in DBS hardware in four patients (two who withdrew before randomisation, one in the sham stimulation group, and one in the active stimulation group). Other serious adverse events included one electrode misplacement (active stimulation group), one episode of depressive signs (active stimulation group), and three episodes of increased tic severity and anxiety (two in the sham stimulation group and one in the active stimulation group). INTERPRETATION: 3 months of aGPi DBS is insufficient to decrease tic severity for patients with Tourette's syndrome. Future research is needed to investigate the efficacy of aGPi DBS for patients over longer periods with optimal stimulation parameters and to identify potential predictors of the therapeutic response. FUNDING: French Ministry of Health.


Asunto(s)
Estimulación Encefálica Profunda/efectos adversos , Globo Pálido , Evaluación de Resultado en la Atención de Salud , Índice de Severidad de la Enfermedad , Síndrome de Tourette/terapia , Adulto , Estimulación Encefálica Profunda/métodos , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia del Tratamiento , Adulto Joven
14.
PLoS One ; 12(4): e0174512, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28399152

RESUMEN

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for the motor and non-motor signs of Parkinson's disease (PD), however, psychological disorders and social maladjustment have been reported in about one third of patients after STN-DBS. We propose here a perioperative psychoeducation programme to limit such social and familial disruption. METHODS: Nineteen PD patients and carers were included in a randomised single blind study. Social adjustment scale (SAS) scores from patients and carers that received the psychoeducation programme (n = 9) were compared, both 1 and 2 years after surgery, with patients and carers with usual care (n = 10). Depression, anxiety, cognitive status, apathy, coping, parkinsonian disability, quality-of-life, carers' anxiety and burden were also analysed. RESULTS: Seventeen patients completed the study, 2 were excluded from the final analysis because of adverse events. At 1 year, 2/7 patients with psychoeducation and 8/10 with usual care had an aggravation in at least one domain of the SAS (p = .058). At 2 years, only 1 patient with psychoeducation suffered persistent aggravated social adjustment as compared to 8 patients with usual care (p = .015). At 1 year, anxiety, depression and instrumental coping ratings improved more in the psychoeducation than in the usual care group (p = .038, p = .050 and p = .050, respectively). No significant differences were found between groups for quality of life, cognitive status, apathy or motor disability. CONCLUSIONS: Our results suggest that a perioperative psychoeducation programme prevents social maladjustment in PD patients following STN-DBS and improves anxiety and depression compared to usual care. These preliminary data need to be confirmed in larger studies.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/terapia , Psicoterapia , Ajuste Social , Núcleo Subtalámico , Adaptación Psicológica , Anciano , Apatía , Cuidadores/psicología , Cognición , Estimulación Encefálica Profunda/efectos adversos , Evaluación de la Discapacidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Educación del Paciente como Asunto , Periodo Perioperatorio , Escalas de Valoración Psiquiátrica , Psicoterapia/métodos , Calidad de Vida , Método Simple Ciego , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/fisiopatología , Resultado del Tratamiento
15.
Front Neurosci ; 10: 170, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199634

RESUMEN

Tourette Syndrome (TS) is a neuropsychiatric disease characterized by a combination of motor and vocal tics. Deep brain stimulation (DBS), already widely utilized for Parkinson's disease and other movement disorders, is an emerging therapy for select and severe cases of TS that are resistant to medication and behavioral therapy. Over the last two decades, DBS has been used experimentally to manage severe TS cases. The results of case reports and small case series have been variable but in general positive. The reported interventions have, however, been variable, and there remain non-standardized selection criteria, various brain targets, differences in hardware, as well as variability in the programming parameters utilized. DBS centers perform only a handful of TS DBS cases each year, making large-scale outcomes difficult to study and to interpret. These limitations, coupled with the variable effect of surgery, and the overall small numbers of TS patients with DBS worldwide, have delayed regulatory agency approval (e.g., FDA and equivalent agencies around the world). The Tourette Association of America, in response to the worldwide need for a more organized and collaborative effort, launched an international TS DBS registry and database. The main goal of the project has been to share data, uncover best practices, improve outcomes, and to provide critical information to regulatory agencies. The international registry and database has improved the communication and collaboration among TS DBS centers worldwide. In this paper we will review some of the key operation details for the international TS DBS database and registry.

16.
J Neurol Neurosurg Psychiatry ; 87(2): 167-72, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25770124

RESUMEN

OBJECTIVES: Orthostatic tremor is a rare condition characterised by high-frequency tremor that appears on standing. Although the essential clinical features of orthostatic tremor are well established, little is known about the natural progression of the disorder. We report the long-term outcome based on the largest multicentre cohort of patients with orthostatic tremor. METHODS: Clinical information of 68 patients with clinical and electrophysiological diagnosis of orthostatic tremor and a minimum follow-up of 5 years is presented. RESULTS: There was a clear female preponderance (76.5%) with a mean age of onset at 54 years. Median follow-up was 6 years (range 5-25). On diagnosis, 86.8% of patients presented with isolated orthostatic tremor and 13.2% had additional neurological features. At follow-up, seven patients who initially had isolated orthostatic tremor later developed further neurological signs. A total 79.4% of patients reported worsening of orthostatic tremor symptoms. These patients had significantly longer symptom duration than those without reported worsening (median 15.5 vs 10.5 years, respectively; p=0.005). There was no change in orthostatic tremor frequency over time. Structural imaging was largely unremarkable and dopaminergic neuroimaging (DaTSCAN) was normal in 18/19 cases. Pharmacological treatments were disappointing. Two patients were treated surgically and showed improvement. CONCLUSIONS: Orthostatic tremor is a progressive disorder with increased disability although tremor frequency is unchanged over time. In most cases, orthostatic tremor represents an isolated syndrome. Drug treatments are unsatisfactory but surgery may hold promise.


Asunto(s)
Temblor/epidemiología , Temblor/terapia , Edad de Inicio , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Progresión de la Enfermedad , Neuronas Dopaminérgicas , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen , Procedimientos Neuroquirúrgicos/métodos , Factores Sexuales , Estimulación de la Médula Espinal , Resultado del Tratamiento , Temblor/tratamiento farmacológico
17.
J Neurol ; 262(6): 1515-25, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25904205

RESUMEN

Gait and balance disorders are the major source of motor disabilities in advanced forms of Parkinson's disease (PD). Low-frequency stimulation of the pedunculopontine nucleus area (PPNa-DBS) has been recently proposed to treat these symptoms with variable clinical results. To further understand the effects of PPNa-DBS on resistant gait and balance disorders, we performed a randomised double-blind cross-over study in six PD patients. Evaluation included clinical assessment of parkinsonian disability, quality of life and neurophysiological recordings of gait. Evaluations were done 1 month before, 4 and 6 months after surgery with four double-blinded conditions assessed: with and without PPNa-DBS, with and without levodopa treatment. Four patients completed the study and two patients were excluded from the final analysis because of peri-operative adverse events (haematoma, infection). Clinically, the combination of PPNa-DBS and levodopa treatment produced a significant decrease of the freezing episodes. The frequency of falls also decreased in three out of four patients. From a neurophysiological point of view, PPNa-DBS significantly improved the anticipatory postural adjustments and double-stance duration, but not the length and speed of the first step. Interestingly, step length and speed improved after surgery without PPNa-DBS, suggesting that the lesioning effect of PPNa-DBS surgery alleviates parkinsonian akinesia. Quality of life was also significantly improved with PPNa-DBS. These results suggest that PPNa-DBS could improve gait and balance disorders in well-selected PD patients. However, this treatment may be riskier than others DBS surgeries in these patients with an advanced form of PD.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Trastornos Neurológicos de la Marcha/terapia , Núcleo Tegmental Pedunculopontino/fisiología , Equilibrio Postural/fisiología , Trastornos de la Sensación/terapia , Anciano , Antiparasitarios/uso terapéutico , Método Doble Ciego , Femenino , Trastornos Neurológicos de la Marcha/etiología , Humanos , Imagenología Tridimensional , Levodopa/uso terapéutico , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Evaluación de Resultado en la Atención de Salud , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Trastornos de la Sensación/etiología , Encuestas y Cuestionarios
18.
Brain ; 138(Pt 5): 1284-96, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25765327

RESUMEN

The brainstem pedunculopontine nucleus has a likely, although unclear, role in gait control, and is a potential deep brain stimulation target for treating resistant gait disorders. These disorders are a major therapeutic challenge for the ageing population, especially in Parkinson's disease where gait and balance disorders can become resistant to both dopaminergic medication and subthalamic nucleus stimulation. Here, we present electrophysiological evidence that the pedunculopontine and subthalamic nuclei are involved in distinct aspects of gait using a locomotor imagery task in 14 patients with Parkinson's disease undergoing surgery for the implantation of pedunculopontine or subthalamic nuclei deep brain stimulation electrodes. We performed electrophysiological recordings in two phases, once during surgery, and again several days after surgery in a subset of patients. The majority of pedunculopontine nucleus neurons (57%) recorded intrasurgically exhibited changes in activity related to different task components, with 29% modulated during visual stimulation, 41% modulated during voluntary hand movement, and 49% modulated during imaginary gait. Pedunculopontine nucleus local field potentials recorded post-surgically were modulated in the beta and gamma bands during visual and motor events, and we observed alpha and beta band synchronization that was sustained for the duration of imaginary gait and spatially localized within the pedunculopontine nucleus. In contrast, significantly fewer subthalamic nucleus neurons (27%) recorded intrasurgically were modulated during the locomotor imagery, with most increasing or decreasing activity phasically during the hand movement that initiated or terminated imaginary gait. Our data support the hypothesis that the pedunculopontine nucleus influences gait control in manners extending beyond simply driving pattern generation. In contrast, the subthalamic nucleus seems to control movement execution that is not likely to be gait-specific. These data highlight the crucial role of these two nuclei in motor control and shed light on the complex functions of the lateral mesencephalus in humans.


Asunto(s)
Estimulación Encefálica Profunda , Marcha , Trastornos del Movimiento/fisiopatología , Enfermedad de Parkinson/fisiopatología , Núcleo Tegmental Pedunculopontino/fisiología , Núcleo Subtalámico/fisiología , Anciano , Electrodos Implantados , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Movimiento/terapia , Enfermedad de Parkinson/terapia
19.
Neurology ; 82(15): 1352-61, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24647024

RESUMEN

OBJECTIVE: To further determine the causes of variable outcome from deep brain stimulation of the subthalamic nucleus (DBS-STN) in patients with Parkinson disease (PD). METHODS: Data were obtained from our cohort of 309 patients with PD who underwent DBS-STN between 1996 and 2009. We examined the relationship between the 1-year motor, cognitive, and psychiatric outcomes and (1) preoperative PD clinical features, (2) MRI measures, (3) surgical procedure, and (4) locations of therapeutic contacts. RESULTS: Pre- and postoperative results were obtained in 262 patients with PD. The best motor outcome was obtained when stimulating contacts were located within the STN as compared with the zona incerta (64% vs 49% improvement). Eighteen percent of the patients presented a postoperative cognitive decline, which was found to be principally related to the surgical procedure. Other factors predictive of poor cognitive outcome were perioperative confusion and psychosis. Nineteen patients showed a stimulation-induced hypomania, which was related to both the form of the disease (younger age, shorter disease duration, higher levodopa responsiveness) and the ventral contact location. Postoperative depression was more frequent in patients already showing preoperative depressive and/or residual axial motor symptoms. CONCLUSION: In this homogeneous cohort of patients with PD, we showed that (1) the STN is the best target to improve motor symptoms, (2) postoperative cognitive deficit is mainly related to the surgery itself, and (3) stimulation-induced hypomania is related to a combination of both the disease characteristics and a more ventral STN location.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/cirugía , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/cirugía , Periodo Posoperatorio , Resultado del Tratamiento
20.
Brain ; 136(Pt 1): 304-17, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23365104

RESUMEN

Doubt, and its behavioural correlate, checking, is a normal phenomenon of human cognition that is dramatically exacerbated in obsessive-compulsive disorder. We recently showed that deep brain stimulation in the associative-limbic area of the subthalamic nucleus, a central core of the basal ganglia, improved obsessive-compulsive disorder. To understand the physiological bases of symptoms in such patients, we recorded the activity of individual neurons in the therapeutic target during surgery while subjects performed a cognitive task that gave them the possibility of unrestricted repetitive checking after they had made a choice. We postulated that the activity of neurons in this region could be influenced by doubt and checking behaviour. Among the 63/87 task-related neurons recorded in 10 patients, 60% responded to various combinations of instructions, delay, movement or feedback, thus highlighting their role in the integration of different types of information. In addition, task-related activity directed towards decision-making increased during trials with checking in comparison with those without checking. These results suggest that the associative-limbic subthalamic nucleus plays a role in doubt-related repetitive thoughts. Overall, our results not only provide new insight into the role of the subthalamic nucleus in human cognition but also support the fact that subthalamic nucleus modulation by deep brain stimulation reduced compulsive behaviour in patients with obsessive-compulsive disorder.


Asunto(s)
Conducta Compulsiva/fisiopatología , Neuronas/fisiología , Trastorno Obsesivo Compulsivo/fisiopatología , Núcleo Subtalámico/fisiopatología , Adulto , Conducta Compulsiva/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastorno Obsesivo Compulsivo/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA