Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39253442

RESUMEN

Polyamines are abundant and evolutionarily conserved metabolites that are essential for life. Dietary polyamine supplementation extends life-span and health-span. Dysregulation of polyamine homeostasis is linked to Parkinson's disease and cancer, driving interest in therapeutically targeting this pathway. However, measuring cellular polyamine levels, which vary across cell types and states, remains challenging. We introduce a first-in-class genetically encoded polyamine reporter for real-time measurement of polyamine concentrations in single living cells. This reporter utilizes the polyamine-responsive ribosomal frameshift motif from the OAZ1 gene. We demonstrate broad applicability of this approach and reveal dynamic changes in polyamine levels in response to genetic and pharmacological perturbations. Using this reporter, we conducted a genome-wide CRISPR screen and uncovered an unexpected link between mitochondrial respiration and polyamine import, which are both risk factors for genetic Parkinson's disease. By offering a new lens to examine polyamine biology, this reporter may advance our understanding of these ubiquitous metabolites and accelerate therapy development.

2.
Plant J ; 118(6): 2169-2187, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558472

RESUMEN

Genome-wide association studies (GWAS) are an effective approach to identify new specialized metabolites and the genes involved in their biosynthesis and regulation. In this study, GWAS of Arabidopsis thaliana soluble leaf and stem metabolites identified alleles of an uncharacterized BAHD-family acyltransferase (AT5G57840) associated with natural variation in three structurally related metabolites. These metabolites were esters of glucuronosylglycerol, with one metabolite containing phenylacetic acid as the acyl component of the ester. Knockout and overexpression of AT5G57840 in Arabidopsis and heterologous overexpression in Nicotiana benthamiana and Escherichia coli demonstrated that it is capable of utilizing phenylacetyl-CoA as an acyl donor and glucuronosylglycerol as an acyl acceptor. We, thus, named the protein Glucuronosylglycerol Ester Synthase (GGES). Additionally, phenylacetyl glucuronosylglycerol increased in Arabidopsis CYP79A2 mutants that overproduce phenylacetic acid and was lost in knockout mutants of UDP-sulfoquinovosyl: diacylglycerol sulfoquinovosyl transferase, an enzyme required for glucuronosylglycerol biosynthesis and associated with glycerolipid metabolism under phosphate-starvation stress. GGES is a member of a well-supported clade of BAHD family acyltransferases that arose by duplication and neofunctionalized during the evolution of the Brassicales within a larger clade that includes HCT as well as enzymes that synthesize other plant-specialized metabolites. Together, this work extends our understanding of the catalytic diversity of BAHD acyltransferases and uncovers a pathway that involves contributions from both phenylalanine and lipid metabolism.


Asunto(s)
Aciltransferasas , Arabidopsis , Fenilacetatos , Aciltransferasas/genética , Aciltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo , Fenilacetatos/metabolismo
3.
J Am Chem Soc ; 144(17): 7686-7692, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35438481

RESUMEN

Moroidin is a bicyclic plant octapeptide with tryptophan side-chain cross-links, originally isolated as a pain-causing agent from the Australian stinging tree Dendrocnide moroides. Moroidin and its analog celogentin C, derived from Celosia argentea, are inhibitors of tubulin polymerization and, thus, lead structures for cancer therapy. However, low isolation yields from source plants and challenging organic synthesis hinder moroidin-based drug development. Here, we present biosynthesis as an alternative route to moroidin-type bicyclic peptides and report that they are ribosomally synthesized and posttranslationally modified peptides (RiPPs) derived from BURP-domain peptide cyclases in plants. By mining 793 plant transcriptomes for moroidin core peptide motifs within BURP-domain precursor peptides, we identified a moroidin cyclase in Japanese kerria, which catalyzes the installation of the tryptophan-indole-centered macrocyclic bonds of the moroidin bicyclic motif in the presence of cupric ions. Based on the kerria moroidin cyclase, we demonstrate the feasibility of producing diverse moroidins including celogentin C in transgenic tobacco plants and report specific cytotoxicity of celogentin C against a lung adenocarcinoma cancer cell line. Our study sets the stage for future biosynthetic development of moroidin-based therapeutics and highlights that mining plant transcriptomes can reveal bioactive cyclic peptides and their underlying cyclases from new source plants.


Asunto(s)
Péptidos Cíclicos , Triptófano , Australia , Péptidos/metabolismo , Péptidos/farmacología , Péptidos Cíclicos/química , Plantas , Procesamiento Proteico-Postraduccional , Triptófano/metabolismo
4.
Nat Prod Rep ; 38(1): 130-239, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32935693

RESUMEN

Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.


Asunto(s)
Biología Computacional/métodos , Enzimas/metabolismo , Péptidos/química , Péptidos/metabolismo , Ingeniería de Proteínas/métodos , Productos Biológicos/química , Productos Biológicos/clasificación , Productos Biológicos/metabolismo , Enzimas/química , Hidroxilación , Metilación , Péptidos/clasificación , Péptidos/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína/fisiología , Ribosomas/metabolismo
5.
Science ; 368(6497): 1386-1392, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32554597

RESUMEN

The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate biomolecules with distinct physicochemical properties. Here, we investigated whether condensates concentrate small-molecule cancer therapeutics such that their pharmacodynamic properties are altered. We found that antineoplastic drugs become concentrated in specific protein condensates in vitro and that this occurs through physicochemical properties independent of the drug target. This behavior was also observed in tumor cells, where drug partitioning influenced drug activity. Altering the properties of the condensate was found to affect the concentration and activity of drugs. These results suggest that selective partitioning and concentration of small molecules within condensates contributes to drug pharmacodynamics and that further understanding of this phenomenon may facilitate advances in disease therapy.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/metabolismo , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
PLoS One ; 14(9): e0222803, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31539416

RESUMEN

The natural product icariin inhibits human phosphodiesterase-5 (PDE5) and represents a unique pharmacophore for treating erectile dysfunction, pulmonary hypertension, and other diseases. In this study, we explore the available icariin-derived chemical scaffolds through medicinal chemistry to develop novel icariin PDE5 inhibitors with improved potency and specificity. We synthesized six novel semi-synthetic icariin analogs as well as three naturally occurring icariin analogs, and characterized the structure-activity relationship in the context of human PDE5 inhibition using in vitro enzyme inhibition and kinetics assays and molecular modeling. Mammalian-cell-based assays and in vitro enzyme inhibition assays against human PDE6C further helped to identify the most potent and selective icariin analogs. Our results reveal the synergistic contribution of functional groups at the C3 and C7 positions of the icariin backbone towards PDE5 inhibition. Whereas a hydrophobic and flexible alkanol group at the C7 position is sufficient to enhance icariin analog potency, combining this group with a hydrophilic sugar group at the C3 position leads to further enhancement of potency and promotes specificity towards PDE5 versus PDE6C. In particular, compounds 3 and 7 exhibit Ki values of 0.036 ± 0.005 µM and 0.036 ± 0.007 µM towards PDE5 respectively, which are approaching those of commercial PDE5 inhibitors, and can effectively reduce GMP levels in cultured human BJ-hTERT cells. This study identifies novel icariin analogs as potent and selective PDE5 inhibitors poised to become lead compounds for further pharmaceutical development.


Asunto(s)
GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Flavonoides/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Animales , Biocatálisis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , GMP Cíclico/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/química , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/metabolismo , Disfunción Eréctil/fisiopatología , Flavonoides/síntesis química , Flavonoides/química , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Masculino , Modelos Químicos , Estructura Molecular , Inhibidores de Fosfodiesterasa 5/síntesis química , Inhibidores de Fosfodiesterasa 5/química , Relación Estructura-Actividad
7.
Nat Plants ; 5(8): 867-878, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31332312

RESUMEN

Kava (Piper methysticum) is an ethnomedicinal shrub native to the Polynesian islands with well-established anxiolytic and analgesic properties. Its main psychoactive principles, kavalactones, form a unique class of polyketides that interact with the human central nervous system through mechanisms distinct from those of conventional psychiatric drugs. However, an unknown biosynthetic machinery and difficulty in chemical synthesis hinder the therapeutic use of kavalactones. In addition, kava also produces flavokavains, which are chalconoids with anticancer properties structurally related to kavalactones. Here, we report de novo elucidation of the key enzymes of the kavalactone and flavokavain biosynthetic network. We present the structural basis for the evolutionary development of a pair of paralogous styrylpyrone synthases that establish the kavalactone scaffold and the catalytic mechanism of a regio- and stereo-specific kavalactone reductase that produces a subset of chiral kavalactones. We further demonstrate the feasibility of engineering styrylpyrone production in heterologous hosts, thus opening a way to develop kavalactone-based non-addictive psychiatric therapeutics through synthetic biology.


Asunto(s)
Kava/metabolismo , Lactonas/metabolismo , Psicotrópicos/metabolismo , Flavonoides/metabolismo , Kava/enzimología
8.
Nat Commun ; 10(1): 3206, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324795

RESUMEN

Diosgenin is a spiroketal steroidal natural product extracted from plants and used as the single most important precursor for the world steroid hormone industry. The sporadic occurrences of diosgenin in distantly related plants imply possible independent biosynthetic origins. The characteristic 5,6-spiroketal moiety in diosgenin is reminiscent of the spiroketal moiety present in anthelmintic avermectins isolated from actinomycete bacteria. How plants gained the ability to biosynthesize spiroketal natural products is unknown. Here, we report the diosgenin-biosynthetic pathways in himalayan paris (Paris polyphylla), a monocot medicinal plant with hemostatic and antibacterial properties, and fenugreek (Trigonella foenum-graecum), an eudicot culinary herb plant commonly used as a galactagogue. Both plants have independently recruited pairs of cytochromes P450 that catalyze oxidative 5,6-spiroketalization of cholesterol to produce diosgenin, with evolutionary progenitors traced to conserved phytohormone metabolism. This study paves the way for engineering the production of diosgenin and derived analogs in heterologous hosts.


Asunto(s)
Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/metabolismo , Diosgenina/metabolismo , Furanos/metabolismo , Lipogénesis/fisiología , Compuestos de Espiro/metabolismo , Antibacterianos , Colesterol/metabolismo , Citocromos/metabolismo , Galactogogos , Perfilación de la Expresión Génica , Ivermectina/análogos & derivados , Melanthiaceae/química , Metabolómica , Reguladores del Crecimiento de las Plantas/metabolismo , Trigonella
9.
Mol Plant ; 12(7): 935-950, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30999079

RESUMEN

Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots, "Huang Qin," are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, Sesamum indicum and Salvia splendens, revealed that a specialized metabolic pathway for the synthesis of 4'-deoxyflavone bioactives evolved in the genus Scutellaria. We found that the gene encoding a specific cinnamate coenzyme A ligase likely obtained its new function following recent mutations, and that four genes encoding enzymes in the 4'-deoxyflavone pathway are present as tandem repeats in the genome of S. baicalensis. Further analyses revealed that gene duplications, segmental duplication, gene amplification, and point mutations coupled to gene neo- and subfunctionalizations were involved in the evolution of 4'-deoxyflavone synthesis in the genus Scutellaria. Our study not only provides significant insight into the evolution of specific flavone biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants. The reference genome of S. baicalensis is also useful for improving the genome assemblies for other members of the mint family and offers an important foundation for decoding the synthetic pathways of bioactive compounds in medicinal plants.


Asunto(s)
Vías Biosintéticas/genética , Flavanonas , Flavonoides/genética , Scutellaria baicalensis/genética , Flavanonas/genética , Flavanonas/metabolismo , Flavonoides/metabolismo , Genoma de Planta , Medicina Tradicional China , Extractos Vegetales , Raíces de Plantas/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Scutellaria baicalensis/metabolismo , Secuenciación Completa del Genoma
10.
Proc Natl Acad Sci U S A ; 115(46): E10961-E10969, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30373830

RESUMEN

The plant kingdom contains vastly untapped natural product chemistry, which has been traditionally explored through the activity-guided approach. Here, we describe a gene-guided approach to discover and engineer a class of plant ribosomal peptides, the branched cyclic lyciumins. Initially isolated from the Chinese wolfberry Lycium barbarum, lyciumins are protease-inhibiting peptides featuring an N-terminal pyroglutamate and a macrocyclic bond between a tryptophan-indole nitrogen and a glycine α-carbon. We report the identification of a lyciumin precursor gene from L. barbarum, which encodes a BURP domain and repetitive lyciumin precursor peptide motifs. Genome mining enabled by this initial finding revealed rich lyciumin genotypes and chemotypes widespread in flowering plants. We establish a biosynthetic framework of lyciumins and demonstrate the feasibility of producing diverse natural and unnatural lyciumins in transgenic tobacco. With rapidly expanding plant genome resources, our approach will complement bioactivity-guided approaches to unlock and engineer hidden plant peptide chemistry for pharmaceutical and agrochemical applications.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes de Plantas , Péptidos Cíclicos/genética , Plantas/genética , Secuencia de Aminoácidos/genética , Productos Biológicos/química , Genoma , Genómica/métodos , Lignanos/biosíntesis , Péptidos/química , Péptidos/genética , Péptidos Cíclicos/metabolismo , Procesamiento Proteico-Postraduccional , Ribosomas/genética , Ribosomas/metabolismo
11.
J Biol Chem ; 293(48): 18601-18612, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30291143

RESUMEN

Flavonoids are important polyphenolic natural products, ubiquitous in land plants, that play diverse functions in plants' survival in their ecological niches, including UV protection, pigmentation for attracting pollinators, symbiotic nitrogen fixation, and defense against herbivores. Chalcone synthase (CHS) catalyzes the first committed step in plant flavonoid biosynthesis and is highly conserved in all land plants. In several previously reported crystal structures of CHSs from flowering plants, the catalytic cysteine is oxidized to sulfinic acid, indicating enhanced nucleophilicity in this residue associated with its increased susceptibility to oxidation. In this study, we report a set of new crystal structures of CHSs representing all five major lineages of land plants (bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms), spanning 500 million years of evolution. We reveal that the structures of CHS from a lycophyte and a moss species preserve the catalytic cysteine in a reduced state, in contrast to the cysteine sulfinic acid seen in all euphyllophyte CHS structures. In vivo complementation, in vitro biochemical and mutagenesis analyses, and molecular dynamics simulations identified a set of residues that differ between basal-plant and euphyllophyte CHSs and modulate catalytic cysteine reactivity. We propose that the CHS active-site environment has evolved in euphyllophytes to further enhance the nucleophilicity of the catalytic cysteine since the divergence of euphyllophytes from other vascular plant lineages 400 million years ago. These changes in CHS could have contributed to the diversification of flavonoid biosynthesis in euphyllophytes, which in turn contributed to their dominance in terrestrial ecosystems.


Asunto(s)
Aciltransferasas/metabolismo , Evolución Biológica , Cisteína/metabolismo , Embryophyta/enzimología , Aciltransferasas/química , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Embryophyta/clasificación , Embryophyta/fisiología , Simulación de Dinámica Molecular , Filogenia , Conformación Proteica , Homología de Secuencia de Aminoácido
12.
Mol Plant ; 11(1): 205-217, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29277428

RESUMEN

Salidroside is a bioactive tyrosine-derived phenolic natural product found in medicinal plants under the Rhodiola genus. In addition to their anti-fatigue and anti-anoxia roles in traditional medicine, Rhodiola total extract and salidroside have also displayed medicinal properties as anti-cardiovascular diseases and anti-cancer agents. The resulting surge in global demand of Rhodiola plants and salidroside has driven some species close to extinction. Here, we report the full elucidation of the Rhodiola salidroside biosynthetic pathway utilizing the first comprehensive transcriptomics and metabolomics datasets for Rhodiola rosea. Unlike the previously proposed pathway involving separate decarboxylation and deamination enzymatic steps from tyrosine to the key intermediate 4-hydroxyphenylacetaldehyde (4-HPAA), Rhodiola contains a pyridoxal phosphate-dependent 4-HPAA synthase that directly converts tyrosine to 4-HPAA. We further identified genes encoding the subsequent 4-HPAA reductase and tyrosol:UDP-glucose 8-O-glucosyltransferase, respectively, to complete salidroside biosynthesis in Rhodiola. We show that heterologous production of salidroside can be achieved in the yeast Saccharomyces cerevisiae as well as the plant Nicotiana benthamiana through transgenic expression of Rhodiola salidroside biosynthetic genes. This study provides new tools for engineering sustainable production of salidroside in heterologous hosts.


Asunto(s)
Rhodiola/metabolismo , Acetaldehído/metabolismo , Glucósidos/metabolismo , Fenoles/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhodiola/genética , Saccharomyces cerevisiae/metabolismo
13.
Mol Plant ; 11(1): 135-148, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-28842248

RESUMEN

Baicalein, wogonin, and their glycosides are major bioactive compounds found in the medicinal plant Scutellaria baicalensis Georgi. These flavones can induce apoptosis in a variety of cancer cell lines but have no effect on normal cells. Furthermore, they have many additional benefits for human health, such as anti-oxidant, antiviral, and liver-protective properties. Here, we report the isolation and characterization of two CYP450 enzymes, SbCYP82D1.1 and SbCYP82D2, which function as the flavone 6-hydroxylase (F6H) and flavone 8-hydroxylase (F8H), respectively, in S. baicalensis. SbCYP82D1.1 has broad substrate specificity for flavones such as chrysin and apigenin and is responsible for biosynthesis of baicalein and scutellarein in roots and aerial parts of S. baicalensis, respectively. When the expression of SbCYP82D1.1 is knocked down, baicalin and baicalein levels are reduced significantly while chrysin glycosides accumulate in hairy roots. SbCYP82D2 is an F8H with high substrate specificity, accepting only chrysin as its substrate to produce norwogonin, although minor 6-hydroxylation activity can also be detected. Phylogenetic analysis suggested that SbCYP82D2 might have evolved from SbCYP82D1.1 via gene duplication followed by neofunctionalization, whereby the ancestral F6H activity is partially retained in the derived SbCYP82D2.


Asunto(s)
Flavonas/metabolismo , Raíces de Plantas/metabolismo , Scutellaria baicalensis/metabolismo , Apigenina/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Flavanonas/metabolismo , Flavonoides/metabolismo , Humanos , Filogenia , Saccharomyces cerevisiae/metabolismo , Scutellaria baicalensis/genética
14.
Nat Plants ; 3: 17109, 2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-28758992

RESUMEN

Plants have long been recognized for their therapeutic properties. For centuries, indigenous cultures around the world have used traditional herbal medicine to treat a myriad of maladies. By contrast, the rise of the modern pharmaceutical industry in the past century has been based on exploiting individual active compounds with precise modes of action. This surge has yielded highly effective drugs that are widely used in the clinic, including many plant natural products and analogues derived from these products, but has fallen short of delivering effective cures for complex human diseases with complicated causes, such as cancer, diabetes, autoimmune disorders and degenerative diseases. While the plant kingdom continues to serve as an important source for chemical entities supporting drug discovery, the rich traditions of herbal medicine developed by trial and error on human subjects over thousands of years contain invaluable biomedical information just waiting to be uncovered using modern scientific approaches. Here we provide an evolutionary and historical perspective on why plants are of particular significance as medicines for humans. We highlight several plant natural products that are either in the clinic or currently under active research and clinical development, with particular emphasis on their mechanisms of action. Recent efforts in developing modern multi-herb prescriptions through rigorous molecular-level investigations and standardized clinical trials are also discussed. Emerging technologies, such as genomics and synthetic biology, are enabling new ways for discovering and utilizing the medicinal properties of plants. We are entering an exciting era where the ancient wisdom distilled into the world's traditional herbal medicines can be reinterpreted and exploited through the lens of modern science.


Asunto(s)
Medicina de Hierbas , Plantas Medicinales , Evolución Biológica , Productos Biológicos , Industria Farmacéutica/tendencias , Medicina de Hierbas/historia , Medicina de Hierbas/tendencias , Historia Antigua , Humanos , Medicina Tradicional China
15.
Sci Adv ; 2(4): e1501780, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27152350

RESUMEN

Wogonin and baicalein are bioactive flavones in the popular Chinese herbal remedy Huang-Qin (Scutellaria baicalensis Georgi). These specialized flavones lack a 4'-hydroxyl group on the B ring (4'-deoxyflavones) and induce apoptosis in a wide spectrum of human tumor cells in vitro and inhibit tumor growth in vivo in different mouse tumor models. Root-specific flavones (RSFs) from Scutellaria have a variety of reported additional beneficial effects including antioxidant and antiviral properties. We describe the characterization of a new pathway for the synthesis of these compounds, in which pinocembrin (a 4'-deoxyflavanone) serves as a key intermediate. Although two genes encoding flavone synthase II (FNSII) are expressed in the roots of S. baicalensis, FNSII-1 has broad specificity for flavanones as substrates, whereas FNSII-2 is specific for pinocembrin. FNSII-2 is responsible for the synthesis of 4'-deoxyRSFs, such as chrysin and wogonin, wogonoside, baicalein, and baicalin, which are synthesized from chrysin. A gene encoding a cinnamic acid-specific coenzyme A ligase (SbCLL-7), which is highly expressed in roots, is required for the synthesis of RSFs by FNSII-2, as demonstrated by gene silencing. A specific isoform of chalcone synthase (SbCHS-2) that is highly expressed in roots producing RSFs is also required for the synthesis of chrysin. Our studies reveal a recently evolved pathway for biosynthesis of specific, bioactive 4'-deoxyflavones in the roots of S. baicalensis.


Asunto(s)
Flavanonas/biosíntesis , Flavonas/biosíntesis , Flavonoides/biosíntesis , Aciltransferasas/genética , Animales , Antioxidantes/química , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Vías Biosintéticas/genética , Línea Celular Tumoral , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Flavanonas/química , Flavonas/química , Flavonoides/química , Regulación de la Expresión Génica de las Plantas , Humanos , Ratones , Extractos Vegetales/química , Plantas Medicinales/química , Scutellaria baicalensis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA