Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Leukemia ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095503

RESUMEN

Targeting AML by chimeric antigen receptor T-cells (CAR-T) is challenging due to the promiscuous expression of AML-associated antigens in healthy hematopoiesis and high degree of inter- and intratumoral heterogeneity. Here, we present single-cell expression data of AML-associated antigens in 30 primary pediatric AML samples. We identified CD33, CD38, CD371, IL1RAP and CD123 as the most frequently expressed. Notably, high variability was observed not only across the different patient samples but also among leukemic cells of the same patient suggesting the necessity of multiplexed targeting approaches. To address this need, we utilized our modular Adapter CAR (AdCAR) platform, enabling precise qualitative and quantitative control over CAR-T-cell function. We show highly efficient and target-specific activity for newly generated adapter molecules (AMs) against CD33, CD38, CD123, CD135 and CD371, both in vitro and in vivo. We reveal that inherent intratumoral heterogeneity in antigen expression translates into antigen escape and therapy failure to monotargeted CAR-T therapy. Further, we demonstrate in PDX models that rational combinatorial targeting by AdCAR-T-cells can cure heterogenic disease. In conclusion, we elucidate the clinical relevance of heterogeneity in antigen expression in pediatric AML and present a novel concept for precision immunotherapy by combinatorial targeting utilizing the AdCAR platform.

2.
Mol Ther Oncol ; 32(2): 200797, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38601972

RESUMEN

Acute myeloid leukemia (AML), a fast-progressing hematological malignancy affecting myeloid cells, is typically treated with chemotherapy or hematopoietic stem cell transplantation. However, approximately half of the patients face relapses and 5-year survival rates are poor. With the goal to facilitate dual-specificity, boosting anti-tumor activity, and minimizing the risk for antigen escape, this study focused on combining chimeric antigen receptor (CAR) and T cell receptor (TCR) technologies. CAR'TCR-T cells, co-expressing a CD33-CAR and a transgenic dNPM1-TCR, revealed increased and prolonged anti-tumor activity in vitro, particularly in case of low target antigen expression. The distinct transcriptomic profile suggested enhanced formation of immunological synapses, activation, and signaling. Complete elimination of AML xenografts in vivo was only achieved with a cell product containing CAR'TCR-T, CAR-T, and TCR-T cells, representing the outcome of co-transduction with two lentiviral vectors encoding either CAR or TCR. A mixture of CAR-T and TCR-T cells, without CAR'TCR-T cells, did not prevent progressive tumor outgrowth and was comparable to treatment with CAR-T and TCR-T cells individually. Overall, our data underscore the efficacy of co-expressing CAR and transgenic TCR in one T cell, and might open a novel therapeutic avenue not only for AML but also other malignancies.

3.
Oncoimmunology ; 11(1): 2140534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387056

RESUMEN

Solid tumors consist of malignant and nonmalignant cells that together create the local tumor microenvironment (TME). Additionally, the TME is characterized by the expression of numerous soluble factors such as TGF-ß. TGF-ß plays an important role in the TME by suppressing T cell effector function and promoting tumor invasiveness. Up to now CAR T cells exclusively target tumor-associated antigens (TAA) located on the cell membrane. Thus, strategies to exploit soluble antigens as CAR targets within the TME are needed. This study demonstrates a novel approach using Adapter CAR (AdCAR) T cells for the detection of soluble latent TGF-ß within the TME of a pancreatic tumor model. We show that AdCARs in combination with the respective adapter can be used to sense soluble tumor-derived latent TGF-ß, both in vitro and in vivo. Sensing of the soluble antigen induced cellular activation and effector cytokine production in AdCAR T cells. Moreover, we evaluated AdCAR T cells for the combined targeting of soluble latent TGF-ß and tumor cell killing by targeting CD66c as TAA in vivo. In sum, our study broadens the spectrum of targetable moieties for AdCAR T cells by soluble latent TGF-ß.


Asunto(s)
Antígenos de Neoplasias , Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/metabolismo , Oligonucleótidos , Membrana Celular/metabolismo , Linfocitos T
4.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36096530

RESUMEN

BACKGROUND: There is an increasing demand for chimeric antigen receptor (CAR) T cell products from patients and care givers. Here, we established an automated manufacturing process for CAR T cells on the CliniMACS Prodigy platform that is scaled to provide therapeutic doses and achieves gene-transfer with virus-free Sleeping Beauty (SB) transposition. METHODS: We used an advanced CliniMACS Prodigy that is connected to an electroporator unit and performed a series of small-scale development and large-scale confirmation runs with primary human T cells. Transposition was accomplished with minicircle (MC) DNA-encoded SB100X transposase and pT2 transposon encoding a CD19 CAR. RESULTS: We defined a bi-pulse electroporation shock with bi-directional and unidirectional electric field, respectively, that permitted efficient MC insertion and maintained a high frequency of viable T cells. In three large scale runs, 2E8 T cells were enriched from leukapheresis product, activated, gene-engineered and expanded to yield up to 3.5E9 total T cells/1.4E9 CAR-modified T cells within 12 days (CAR-modified T cells: 28.8%±12.3%). The resulting cell product contained highly pure T cells (97.3±1.6%) with balanced CD4/CD8 ratio and a high frequency of T cells with central memory phenotype (87.5%±10.4%). The transposon copy number was 7.0, 9.4 and 6.8 in runs #1-3, respectively, and gene analyses showed a balanced expression of activation/exhaustion markers. The CD19 CAR T cell product conferred potent anti-lymphoma reactivity in pre-clinical models. Notably, the operator hands-on-time was substantially reduced compared with conventional non-automated CAR T cell manufacturing campaigns. CONCLUSIONS: We report on the first automated transposon-based manufacturing process for CAR T cells that is ready for formal validation and use in clinical manufacturing campaigns. This process and platform have the potential to facilitate access of patients to CAR T cell therapy and to accelerate scaled, multiplexed manufacturing both in the academic and industry setting.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Antígenos CD19/genética , Antígenos CD19/metabolismo , Humanos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T , Linfocitos T
5.
Cancers (Basel) ; 13(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638227

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has emerged as an attractive strategy for cancer immunotherapy. Despite remarkable success for hematological malignancies, excessive activity and poor control of CAR T cells can result in severe adverse events requiring control strategies to improve safety. This work illustrates the feasibility of a zinc finger-based inducible switch system for transcriptional regulation of an anti-CD20 CAR in primary T cells providing small molecule-inducible control over therapeutic functions. We demonstrate time- and dose-dependent induction of anti-CD20 CAR expression and function with metabolites of the clinically-approved drug tamoxifen, and the absence of background CAR activity in the non-induced state. Inducible CAR T cells executed fine-tuned cytolytic activity against target cells both in vitro and in vivo, whereas CAR-related functions were lost upon drug discontinuation. This zinc finger-based transcriptional control system can be extended to other therapeutically important CARs, thus paving the way for safer cellular therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA